0000000000610475
AUTHOR
B. Brichard
Effects of high pressure thermal treatments in oxygen and helium atmospheres on amorphous silicon dioxide and its radiation hardness
The effects of thermal treatments at similar to 400 degrees C in oxygen or helium atmospheres at similar to 180 baron the radiation hardness of amorphous SiO(2) are studied. The generation efficiency of several point defects under gamma irradiation is compared to that of the untreated material. All the effects on point defects generation here observed can be explained in terms of changes in the precursor sites. In particular it has been observed that the thermal treatments can change the precursors sites of point defects both through temperature and pressure related processes, not depending on the atmosphere, and through oxygen related processes creating oxygen excess sites. The presence of…
Evaluation of the UV Optical Transmission Degradation of Gamma-ray Irradiated Optical Fibers
This paper highlights our recent results on the investigation of the transmission attenuation in the UV spectral range induced by gamma-ray irradiation of optical fibers, and the comparison with results obtained by electron paramagnetic resonance (EPR) and photoluminescence measurements.
Comparison of gamma and beta-ray irradiation effects in sol-gel Ge-doped SiO2
Comparison of &#x03B3; and &#x03B2;-ray irradiation effects in sol-gel Ge-doped SiO<inf>2</inf>
We report an experimental study on the comparison between the γ or β ray induced Ge related point defects in Ge doped silica. Silica samples doped with ∼2.2 1017 Ge atoms/cm3 produced with the sol-gel technique have been irradiated. The effects of the irradiation have been investigated by optical absorption, photoluminescence and electron paramagnetic resonance spectroscopy in order to evaluate the generation and the dependence on dose of the Ge(1), E'Ge, Germanium Lone Pair Center (GLPC) and H(II) point defects. No relevant differences between the concentrations of γ or β ray induced Ge(1) and E'Ge point defects have been observed. In addition, it is found that both irradiations are able t…
Formation of optically active oxygen deficient centers in Ge-doped SiO2 by γ- and β-ray irradiation
Abstract We report an experimental study on the comparison between the γ- or β-ray induced Ge related point defects in Ge-doped silica. Silica samples doped with ∼2.2 1017 Ge atoms/cm3 produced with the sol–gel technique have been irradiated with γ-ray or with β-ray. The effects of the irradiation have been investigated by optical absorption, photoluminescence and electron paramagnetic resonance spectroscopy in order to evaluate the generation and the dependence on dose of the Ge(1), E’Ge, GLPC (Germanium lone pair center) and H(II) point defects. No relevant differences between the concentrations of γ- or β-ray induced Ge(1) and E’Ge point defects have been observed and, in addition, it ha…
Comparison Between Point Defect Generation by $\gamma$-rays in Bulk and Fibre Samples of High Purity Amorphous ${\hbox {SiO}}_{2}$
We compare the E', H(I) and Si-ODC(II) contents in a low-OH high-purity a-SiO2 either in bulk or fibre forms. We found that the H(I) centre appears during irradiation and tend to increase with the dose if the fibre contains hydrogen excess. This behaviour is believed to be one the possible reason to explain the apparent radiation-sensitivity enhancement in the blue-UV spectrum when the fibre is hydrogenated and irradiated at high dose. However for the hydrogen-treated fibres, no experimental repeatability could be evidenced in the measurements of E' and Si-ODC(II) although an acceptable agreement was still found in normal samples. This suggests a possible complex reactional mechanisms in pr…