0000000000612919

AUTHOR

Philippe Declerck

showing 4 related works from this author

Impact of Bacterial Siderophores on Iron Status and Ionome in Pea

2020

National audience; Including more grain legumes in cropping systems is important for the development of agroecological practices and the diversification of protein sources for human and animal consumption. Grain legume yield and quality is impacted by abiotic stresses resulting from fluctuating availabilities in essential nutrients such as iron deficiency chlorosis (IDC). Promoting plant iron nutrition could mitigate IDC that currently impedes legume cultivation in calcareous soils, and increase the iron content of legume seeds and its bioavailability. There is growing evidence that plant microbiota contribute to plant iron nutrition and might account for variations in the sensitivity of pe…

0106 biological sciences0301 basic medicineSiderophoresiderophorepeaPlant ScienceBiologylcsh:Plant cultureIron defciency01 natural sciences03 medical and health scienceschemistry.chemical_compoundiron deficiencyPseudomonasplant iron nutritionlcsh:SB1-1110CultivarIron deficiency (plant disorder)LegumeOriginal Research2. Zero hungerRhizosphereChlorosisPyoverdinepyoverdinefood and beverages15. Life on landHorticulture030104 developmental biologychemistry[SDE]Environmental SciencesIDCIonomics010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Complementary approaches towards the discovery of genes controlling yield in pea

2019

International audience; Pea is one of the most important grain legumes in the world. Improving pea yield is a critical breedingtarget in the current context of consumers’ increasing demand for plant proteins for food and feed. Becauseof its polygenic nature and the impact of the environment, breeding for higher yield is challenging. Weinvestigated the genetic determinism of yield (SW), seed number (SN) and thousand seed weight (TSW) usingboth linkage and linkage-disequilibrium approaches.Nine interconnected mapping populations, representing a total of 1,213 recombinant inbred lineswere phenotyped for SW, SN and TSW in six different field environments. These lines were genotyped usingthe Gen…

[SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[INFO]Computer Science [cs][SDV.BV] Life Sciences [q-bio]/Vegetal Biology
researchProduct

The Pea genome and after...

2019

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV.BV] Life Sciences [q-bio]/Vegetal Biology
researchProduct

High throughput root phenotyping, besides shoot phenotyping

2018

International audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyComputingMilieux_MISCELLANEOUS
researchProduct