0000000000614790

AUTHOR

L. Angelini

showing 2 related works from this author

A self-consistent approach to the reflection component in 4U 1705-44

2010

High-resolution spectroscopy has recently revealed in many neutron-star Low-Mass X-ray binaries that the shape of the broad iron line observed in the 6.4-6.97 keV range is consistently well fitted by a relativistically smeared line profile. We show here spectral fitting results using a newly developed self-consistent reflection model on XMM-Newton data of the LMXB 4U 1705-44 during a period when the source was in a bright soft state. This reflection model adopts a blackbody prescription for the shape of the impinging radiation field, that we physically associate with the boundary layer emission. © 2010 American Institute of Physics.

Physicsindividual: 4U 1705-44; stars: neutron stars; X-ray: general; X-ray: spectrum; X-ray: stars; Physics and Astronomy (all) [accretion discs; stars]stars: neutron starAstrophysics::High Energy Astrophysical PhenomenaX-ray: generalX-ray binaryCosmic background radiationX-ray: starAstrophysicsX-ray: spectrumstars: individual: 4U 1705-44Interstellar mediumPhysics and Astronomy (all)accretion discReflection (physics)Black-body radiationInfrared cirrusSpectroscopyLine (formation)
researchProduct

A relativistically broadened iron line from an Accreting Millisecond Pulsar

2010

The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…

PhysicsrelativityAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars: pulsars: individual: SAX J1808.4-3658accretion accretion diskprofiles; relativity; stars: pulsars: individual: SAX J1808.4-3658; X-rays: binaries; Physics and Astronomy (all) [accretion accretion disks; line]X-rays: binarieNeutron starPhysics and Astronomy (all)Pulsarline: profileMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsLine (formation)Doppler broadening
researchProduct