0000000000614977

AUTHOR

Estelina Lora Da Silva

0000-0002-7093-3266

showing 5 related works from this author

PrVO$_4$ under High Pressure: Effects on Structural, Optical and Electrical Properties

2020

In pursue of a systematic characterization of rare-earth vanadates under compression, in this work we present a multifaceted study of the phase behavior of zircon-type orthovanadate PrVO$_4$ under high pressure conditions, up until 24 GPa. We have found that PrVO$_4$ undergoes a zircon to monazite transition at around 6 GPa, confirming previous results found by Raman experiments. A second transition takes place above 14 GPa, to a BaWO$_4$-I--type structure. The zircon to monazite structural sequence is an irreversible first-order transition, accompanied by a volume collapse of about 9.6%. Monazite phase is thus a metastable polymorph of PrVO$_4$. The monazite-BaWO$_4$-II transition is found…

Work (thermodynamics)Condensed Matter - Materials Science010405 organic chemistryChemistryMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences010402 general chemistryCompression (physics)01 natural sciences0104 chemical sciencesCharacterization (materials science)Inorganic ChemistryCondensed Matter - Other Condensed MatterHigh pressurePhase (matter)Physical and Theoretical ChemistryComposite materialOther Condensed Matter (cond-mat.other)
researchProduct

Experimental and Theoretical Study of SbPO 4 under Compression

2019

SbPO4 is a complex monoclinic layered material characterized by a strong activity of the non-bonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a-axis and linked by weak Sb-O electrostatic interactions. In fact, Sb is 4-fold coordination with O similar to what occurs with the P-O coordination, despite the large difference of ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of …

Phase transitionphosphatesFOS: Physical sciencesTriclinic crystal system010402 general chemistry01 natural sciencesphysical and chemical processesInorganic ChemistryElectronegativityPhase (matter)Physical and Theoretical ChemistryAnisotropyCondensed Matter - Materials ScienceIonic radius010405 organic chemistryChemistryMaterials Science (cond-mat.mtrl-sci)Compression (physics)compression3. Good health0104 chemical sciencesChemical physicsFISICA APLICADAchemical structurecompressibilityMonoclinic crystal systemInorganic Chemistry
researchProduct

CSD 2002439: Experimental Crystal Structure Determination

2020

Related Article: Enrico Bandiello, Catalin Popescu, Estelina Lora da Silva, Juan Ángel Sans, Daniel Errandonea, Marco Bettinelli|2020|Inorg.Chem.|59|18325|doi:10.1021/acs.inorgchem.0c02933

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CSD 2004534: Experimental Crystal Structure Determination

2020

Related Article: Enrico Bandiello, Catalin Popescu, Estelina Lora da Silva, Juan Ángel Sans, Daniel Errandonea, Marco Bettinelli|2020|Inorg.Chem.|59|18325|doi:10.1021/acs.inorgchem.0c02933

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CSD 2002441: Experimental Crystal Structure Determination

2020

Related Article: Enrico Bandiello, Catalin Popescu, Estelina Lora da Silva, Juan Ángel Sans, Daniel Errandonea, Marco Bettinelli|2020|Inorg.Chem.|59|18325|doi:10.1021/acs.inorgchem.0c02933

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct