0000000000615392

AUTHOR

K. J. Cann

Fine structure in the alpha decays of 226U and 230Pu

The nuclei 226U and 230Pu have been populated via reactions involving 208Pb targets bombarded by 22Ne and 26Mg projectiles. Fusion-evaporation residues were separated in-flight using a gas-filled recoil separator. A position-sensitive Si-strip detector was employed at the focal plane in order to identify correlated α-decay chains. Two fine structure α-decay lines have been observed. The first, with an energy of 7385(5) keV, is assigned as the α decay from 226U to the first excited 2+ state of 222Th. The second line, observed for the first time in this work, has an energy of 6961(30) keV and is assigned as the α decay from 230Pu to the first excited 2+ state of 226U. The excitation energy of…

research product

Spectroscopic study of228-234Th nuclei using multi-nucleon transfer reactions

Light-actinide nuclei in the octupole deformed region have been populated using multi-nucleon transfer from Th. The energy level schemes of several thorium isotopes with A = 228-234 have been extended up to and negative parity states have been observed for the first time in Th. A systematic study of the difference in alignment between the positive- and negative-parity bands in thorium nuclei in this mass region shows that Th behave like octupole vibrators, in contrast with Th, which are octupole-deformed in character. An intrinsic electric dipole moment has been measured for the first time in Th. The small value obtained is consistent with the vibrational description of this nucleus.

research product

Electron spectroscopy using a multi-detector array

A description is given of the novel electron spectrometer SACRED, which uses a multi-element Si array to detect cascades of conversion electrons. Its application to the study of deformed structures in 222Th is described.

research product

Conversion electron spectroscopy of magnetic-rotational bands in 197Pb and 199Pb

Magnetic–rotational bands in the nearly spherical nuclei 197Pb and 199Pb and their decay to the normal states have been investigated by in–beam conversion electron spectroscopy following (heavy ion,xn) reactions. The expected M1 multipolarity of the in–band transitions has been confirmed for the strongest bands and the multipolarity of several transitions in the decay of the bands has been determined.

research product

Spectroscopy of Rn, Ra and Th isotopes using multi-nucleon transfer reactions

Abstract High-spin spectroscopy of Rn, Ra and Th isotopes has been performed. The nuclei have been populated using multi-nucleon transfer reactions involving a 232 Th target and a 136 Xe projectile. This type of reaction offers the only mechanism for populating high-spin states in many of these nuclei. Interleaving bands with opposite parities have been observed to high spin ( ∼28 h ) in 218,220,222 Rn, 222,224,226,228 Ra and 228,230,234 Th. A systematic study of the rotational alignment properties of octupole bands in radon, radium and thorium isotopes reveals information concerning the role of the octupole phonon and the onset of stable octupole deformation with increasing rotational freq…

research product

Observation of octupole structures in radon and radium isotopes and their contrasting behavior at high spin

Multinucleon transfer reactions have been used, for the first time, to populate high-spin bands of alternating parity states in {sup 218,220,222}Rn and {sup 222,224,226}Ra. The behavior of the angular momentum alignment with rotational frequency for the Rn isotopes is very different when compared with Ra and Th isotopes with N{approx}134, indicating a transition from octupole vibrational to stable octupole deformation. Throughout the measured spin range the values of {vert_bar}D{sub 0}/Q{sub 0}{vert_bar} remain constant for {sup 222}Ra and {sup 226}Ra and have a very small value for {sup 224}Ra, suggesting that the charge and mass distributions are not affected appreciably by rotations. {co…

research product