0000000000615402

AUTHOR

Mauro Nisoli

showing 4 related works from this author

Unravelling the Intertwined Atomic and Bulk Nature of Localised Excitons by Attosecond Spectroscopy

2021

The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhi…

optoelectronicsAttosecondphotonicsAttosecond dynamicsGeneral Physics and AstronomyPhysics::Optics02 engineering and technologysemiconductorsTransient reflectivity01 natural sciencesSettore FIS/03 - Fisica Della MateriaUltrafast photonicsPhysicsMultidisciplinaryCondensed matter physicsQCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyfemtosecond optical Stark effectdielectricsStark effectFemtosecondsymbols0210 nano-technologyPhysics - OpticsElectronic properties and materialsattosecondexcitonsScienceExcitonFOS: Physical sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Sciencesymbols.namesakeMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular Clusters010306 general physicsSpectroscopyCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGeneral ChemistryCore excitonselectro-optical propertiesSemiconductorPhotonicsbusinessUltrashort pulseelectron-hole quasi-particlesOptics (physics.optics)
researchProduct

Controlling Floquet states on ultrashort time scales

2022

AbstractThe advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained…

MultidisciplinaryFOS: Physical sciencesGeneral Physics and AstronomyPhysics - Applied PhysicsApplied Physics (physics.app-ph)General ChemistrySettore FIS/03 - Fisica Della MateriaGeneral Biochemistry Genetics and Molecular BiologyPhysics - OpticsOptics (physics.optics)Ultrafast dynamics Floquet physics
researchProduct

Ultrafast dynamics of adenine following XUV ionization

2022

JPhys photonics 4, 034003 (2022). doi:10.1088/2515-7647/ac6ea5 special issue: "Focus on Nanophotonics and Biophotonics for Biomedical and Environmental Applications"

PaperSettore FIS/03ultrafastFocus on Nanophotonics and Biophotonics for Biomedical and Environmental Applicationsdynamicsdissociation530Atomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaElectronic Optical and Magnetic MaterialsXUVPhysics::Atomic and Molecular Clustersddc:530Electrical and Electronic EngineeringadeninenucleobaseJOURNAL OF PHYSICS-PHOTONICS
researchProduct

Correlation-driven sub-3 fs charge migration in ionised adenine

2021

Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly change. Capturing this few-femtosecond/attosecond charge redistribution represents the real-time observation of the electron correlation in the molecule. So far, there has been no experimental evidence of this process. Here we report on a time-resolved study of the correlation-driven charge migration process occurring in the bio-relevant molecule adenine after ionisation by a 15-35 eV attosecond pulse . We find that, the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisa…

Chemical Physics (physics.chem-ph)Physics - Chemical PhysicsFOS: Physical sciences
researchProduct