0000000000615730

AUTHOR

M. Incagli

showing 2 related works from this author

Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment

2021

The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the preces…

Physics::Instrumentation and DetectorsMeasure (physics)FOS: Physical sciences7. Clean energy01 natural sciencesOmegaHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment; High Energy Physics - Experiment; Nuclear ExperimentHigh Energy Physics - Experiment (hep-ex)muon0103 physical sciencesFermilabNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentLarmor precessionPhysicsMuon010308 nuclear & particles physicsSettore FIS/01 - Fisica Sperimentaleanomalous magnetic moment3. Good healthMagnetic fieldPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentStorage ringFermi Gamma-ray Space TelescopePhysical Review
researchProduct

Direct measurement of the W boson width

2009

We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W->enu candidates selected in 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider in ppbar collisions at sqrt{s}=1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 +- 0.072 GeV, is in agreement with the predictions of the standard model.

Particle physicsTevatronGeneral Physics and AstronomyFOS: Physical sciences= 1.8 TEVElementary particle01 natural sciencesHigh Energy Physics - ExperimentStandard Modellaw.inventionNuclear physicsCOLLIDERParticle decayHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)RecoilRATIOPBARP COLLISIONSlaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSFermilabCollider010306 general physicsNuclear ExperimentBosonPhysics010308 nuclear & particles physicsComputer Science::Information Retrieval14.70.Fm 13.38.Be 13.85.QkTransverse mass= 1.8 TEV; PBARP COLLISIONS; RADIATIVE-CORRECTIONS; RATIO; COLLIDER; DECAYHigh Energy Physics::ExperimentCollider Detector at FermilabDECAY
researchProduct