0000000000615730
AUTHOR
M. Incagli
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the preces…
Direct measurement of the W boson width
We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W->enu candidates selected in 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider in ppbar collisions at sqrt{s}=1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 +- 0.072 GeV, is in agreement with the predictions of the standard model.