0000000000615963

AUTHOR

Rebekka Grundler

Bis(1H-indol-2-yl)methanones are effective inhibitors of FLT3-ITD tyrosine kinase and partially overcome resistance to PKC412A in vitro.

Inhibition of the mutated fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase is a promising therapeutic strategy in acute myeloid leukaemia (AML). However, development of resistance to FLT3 tyrosine kinase inhibitors (TKI), such as PKC412A, has been described recently. This observation may have an increasing impact on the duration of response and relapse rates in upcoming clinical trials employing FLT3-TKI. Herein we investigated two representatives of a novel class of FLT3-TKI: Bis(1H-indol-2-yl)methanones. Both compounds effectively induced apoptosis in FLT3-internal tandem duplicate (ITD)-transfected murine myeloid cells and in primary FLT3-ITD positive blasts. Combination of bot…

research product

Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor

Abstract In acute myeloid leukemia (AML), internal tandem duplications (ITDs) of the juxtamembrane (JM) of FLT3 have been shown to play a crucial role in driving proliferation and survival of the leukemic clone. Here, we report the identification of FLT3_ITD mutations located in non-JM domains of the FLT3-receptor. This novel type of FLT3_ITD mutation was found in 216 of 753 (28.7%) of unselected FLT3_ITD-positive AML cases. An FLT3 receptor harbouring a prototypic non-JM ITD (FLT3_ITD627E) mediated constitutive phosphorylation of FLT3 and of STAT5, suggesting that non-JM ITDs confer constitutive activation of the receptor. FLT3_ITD627E induced transformation of hematopoietic 32D cells and …

research product