0000000000621185
AUTHOR
Ponnuthurai Nagaratnam Suganthan
Ensemble strategies in Compact Differential Evolution
Differential Evolution is a population based stochastic algorithm with less number of parameters to tune. However, the performance of DE is sensitive to the mutation and crossover strategies and their associated parameters. To obtain optimal performance, DE requires time consuming trial and error parameter tuning. To overcome the computationally expensive parameter tuning different adaptive/self-adaptive techniques have been proposed. Recently the idea of ensemble strategies in DE has been proposed and favorably compared with some of the state-of-the-art self-adaptive techniques. Compact Differential Evolution (cDE) is modified version of DE algorithm which can be effectively used to solve …
A Differential Evolution Framework with Ensemble of Parameters and Strategies and Pool of Local Search Algorithms
The file attached to this record is the author's final peer reviewed version. The publisher's final version can be found by following the DOI link. The ensemble structure is a computational intelligence supervised strategy consisting of a pool of multiple operators that compete among each other for being selected, and an adaptation mechanism that tends to reward the most successful operators. In this paper we extend the idea of the ensemble to multiple local search logics. In a memetic fashion, the search structure of an ensemble framework cooperatively/competitively optimizes the problem jointly with a pool of diverse local search algorithms. In this way, the algorithm progressively adapts…