0000000000623921
AUTHOR
Pekka Kolmonen
General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales
In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…
In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity
International audience; Published by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from E…
Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space
Abstract In the coming years, Earth Observation missions like the FLuorescence EXplorer (FLEX) will acquire the radiance signal from the visible to the near-infrared at a very high spectral resolution, enabling exciting prospects for new insights in satellite-based photosynthetic studies. In this context, the process of de-coupling atmospheric and vegetation-related spectral signatures will become essential to guarantee a reliable estimation of the vegetation photosynthetic activity from space. Dynamic changes related to the vegetation photosynthetic status result in subtle contributions to the top of atmosphere radiance signal, e.g. due to the emission of the solar-induced chlorophyll fluo…