0000000000624031

AUTHOR

Yu. B. Suris

showing 1 related works from this author

Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results

2006

A numerical scheme is developed for solution of the Goursat problem for a class of nonlinear hyperbolic systems with an arbitrary number of independent variables. Convergence results are proved for this difference scheme. These results are applied to hyperbolic systems of differential-geometric origin, like the sine-Gordon equation describing the surfaces of the constant negative Gaussian curvature (K-surfaces). In particular, we prove the convergence of discrete K--surfaces and their Backlund transformations to their continuous counterparts. This puts on a firm basis the generally accepted belief (which however remained unproved untill this work) that the classical differential geometry of…

Mathematics - Differential GeometrySurface (mathematics)Algebra and Number TheoryNonlinear Sciences - Exactly Solvable and Integrable SystemsIntegrable systemDiscretizationApplied MathematicsMathematical analysisHyperbolic manifoldFOS: Physical sciencesNumerical Analysis (math.NA)Nonlinear systemsymbols.namesakeDifferential geometryDifferential Geometry (math.DG)Gaussian curvaturesymbolsFOS: MathematicsMathematics - Numerical AnalysisExactly Solvable and Integrable Systems (nlin.SI)Hyperbolic partial differential equationAnalysisMathematics
researchProduct