0000000000624424
AUTHOR
Z Zhou
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube
[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…
Search for First-Generation Scalar and Vector Leptoquarks
We describe a search for the pair production of first-generation scalar and vector leptoquarks in the eejj and enujj channels by the D0 Collaboration. The data are from the 1992--1996 ppbar run at sqrt{s} = 1.8 TeV at the Fermilab Tevatron collider. We find no evidence for leptoquark production; in addition, no kinematically interesting events are observed using relaxed selection criteria. The results from the eejj and enujj channels are combined with those from a previous D0 analysis of the nunujj channel to obtain 95% confidence level (C.L.) upper limits on the leptoquark pair-production cross section as a function of mass and of beta, the branching fraction to a charged lepton. These lim…
Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube
[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …
Properties of the Binary Neutron Star Merger GW170817
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…
Direct search for charged Higgs bosons in decays of top quarks
We present a search for charged Higgs bosons in decays of pair-produced top quarks in pbar p collisions at sqrt(s) = 1.8 TeV using 62.2 pb^-1 of data recorded by the D0 detector at the Fermilab Tevatron collider. No evidence is found for signal, and we exclude at 95% confidence most regions of the (M higgs, tan beta) parameter space where the decay t->H b has a branching fraction greater than 0.36 and B(H -> tau nu) is large.
Search for new particles in the two-jet decay channel with the DØ detector
We present the results of a search for the production of new particles decaying into two jets in pp collisions at √s = 1.8 TeV, using the DØ 1992-1995 data set corresponding to 109 pb-1. We exclude at the 95% confidence level the production of excited quarks (q*) with masses below 775 GeV/c2, the most restrictive limit to date. We also exclude standard-model-like W′ (Z′) bosons with masses between 300 and 800 GeV/c2 (400 and 640 GeV/c2). A. W√ boson with mass <786 GeV/c2 has been excluded by previous measurements, and our lower limit is therefore the most stringent to date. © 2004 The American Physical Society.
Search for new physics using QUAERO: A general interface to D0 Event data
We describe Quaero, a method that i) enables the automatic optimization of searches for physics beyond the standard model, and ii) provides a mechanism for making high energy collider data generally available. We apply Quaero to searches for standard model WW, ZZ, and ttbar production, and to searches for these objects produced through a new heavy resonance. Through this interface, we make three data sets collected by the D0 experiment at sqrt(s)=1.8 TeV publicly available.
Direct measurement of the W boson decay width
Based on 85 pb-1 data of p (p) over bar collisions at roots=1.8 TeV collected using the D empty set detector at Fermilab during the 1994-1995 run of the Tevatron, we present a direct measurement of the total decay width of the W boson Gamma(W). The width is determined from the transverse mass spectrum in the W-->e+nu(e) decay channel and found to be Gamma(W)=2.23(-0.14)(+0.15)(stat)+/-0.10(syst) GeV, consistent with the expectation from the standard model.
Quasi-model-independent search for new physics at large transverse momentum
We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X exclusive final states are systematically analyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predicting new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in each set of final states. No evidence of new high p_T physics is observed in the course of this search, and we find that 89% of …
Search for eccentric binary black hole mergers with advanced LIGO and advanced Virgo during their first and second observing runs
When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses min…
Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run
We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between \ud0.2\ud \ud \udM\ud⊙\ud–\ud1.0\ud \ud \udM\ud⊙\ud. We use the null result to constrain the binary merger rate of (\ud0.2\ud \ud \udM\ud⊙\ud, \ud0.2\ud \ud \udM\ud⊙\ud) binaries to be less than \ud3.7\ud×\ud10\ud5\ud \ud \udGpc\ud−\ud3\ud \udyr\ud−\ud1\udand the binary …
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…
GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1$\mathrm{M}_\odot$ during the first and second observing runs of the Advanced gravitational-wave detector network. During the first observing run (O1), from September $12^\mathrm{th}$, 2015 to January $19^\mathrm{th}$, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November $30^\mathrm{th}$, 2016 to August $25^\mathrm{th}$, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary …