0000000000624799

AUTHOR

Damaris Desgarennes

showing 4 related works from this author

Impact of Rearing Conditions on the Ambrosia Beetle’s Microbiome

2018

Ambrosia beetles, along with termites and leafcutter ants, are the only fungus-farming lineages within the tree of life. Bacteria harbored by ambrosia beetles may play an essential role in the nutritional symbiotic interactions with their associated fungi

0106 biological sciences0301 basic medicineXyleborus bispinatusZoologyFungusXyleborus volvulus<i>Xyleborus</i> sp.Ambrosia beetle01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesmicrobiotaAmbrosiaMicrobiomelcsh:ScienceEcology Evolution Behavior and SystematicsmetagenomicsbiologyXyleborus affinisfungifungusPaleontologybiology.organism_classificationXyleborus sp.metabolic capabilities010602 entomology030104 developmental biologySpace and Planetary ScienceMetagenomicslcsh:QLife
researchProduct

The bacterial microbiome of meloidogyne-based disease complex in coffee and tomato

2020

The Meloidogyne-based disease complexes (MDCs) are caused by the interaction of different root-knot nematode species and phytopathogenic fungi. These complexes are devastating several important crops worldwide including tomato and coffee. Despite their relevance, little is known about the role of the bacterial communities in the MDCs. In this study 16s rDNA gene sequencing was used to analyze the bacterial microbiome associated with healthy and infested roots, as well with females and eggs of Meloidogyne enterolobii and M. paranaensis, the causal agents of MDC in tomato and coffee, respectively. Each MDC pathosystems displayed a specific taxonomic diversity and relative abundances constitut…

0106 biological sciences0301 basic medicineMeloidogynePathologie végétalePlant Sciencelcsh:Plant culture01 natural scienceshttp://aims.fao.org/aos/agrovoc/c_479203 medical and health sciencesMaladie des planteshttp://aims.fao.org/aos/agrovoc/c_5962Meloidogyne paranaensisSolanum lycopersicumcorky rootAlteromonadalesBotanyhttp://aims.fao.org/aos/agrovoc/c_1721lcsh:SB1-1110MicrobiomeH20 - Maladies des planteshttp://aims.fao.org/aos/agrovoc/c_4475Original Researchfunctional profilehttp://aims.fao.org/aos/agrovoc/c_4729biologypathobiomeP34 - Biologie du solfood and beveragesNocardiaCoffea arabicabiology.organism_classification16S ribosomal RNABacillalesMeloidogyne enterolobiiBurkholderiales030104 developmental biologyNematodehttp://aims.fao.org/aos/agrovoc/c_5974Meloidogyne enterolobii010606 plant biology & botany
researchProduct

Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis.

2020

The bacterial and fungal community involved in ambrosia beetle fungiculture remains poorly studied compared to the famous fungus-farming ants and termites. Here we studied microbial community dynamics of laboratory nests, adults, and brood during the life cycle of the sugarcane shot hole borer, Xyleborus affinis. We identified a total of 40 fungal and 428 bacterial operational taxonomic units (OTUs), from which only five fungi (a Raffaelea fungus and four ascomycete yeasts) and four bacterial genera (Stenotrophomonas, Enterobacter, Burkholderia, and Ochrobactrum) can be considered the core community playing the most relevant symbiotic role. Both the fungal and bacterial populations varied s…

0106 biological sciences0301 basic medicinePhysiologyAmbrosia fungimicrobiomeFungicultureFungusBiologyAmbrosia beetle010603 evolutionary biology01 natural sciencesBiochemistryMicrobiologyHost-Microbe Biology03 medical and health sciencesmycobiomeSymbiosisBotanyGeneticsAmbrosiaInternal transcribed spacerXyleborus affinisMolecular BiologyEcology Evolution Behavior and SystematicsMutualism (biology)fungibiology.organism_classificationQR1-502Computer Science Applications030104 developmental biologyModeling and SimulationResearch Article
researchProduct

Metagenomic Survey of the Highly Polyphagous Anastrepha ludens Developing in Ancestral and Exotic Hosts Reveals the Lack of a Stable Microbiota in La…

2021

We studied the microbiota of a highly polyphagous insect, Anastrepha ludens (Diptera: Tephritidae), developing in six of its hosts, including two ancestral (Casimiroa edulis and C. greggii), three exotic (Mangifera indica cv. Ataulfo, Prunus persica cv. Criollo, and Citrus x aurantium) and one occasional host (Capsicum pubescens cv. Manzano), that is only used when extreme drought conditions limit fruiting by the common hosts. One of the exotic hosts (“criollo” peach) is rife with polyphenols and the occasional host with capsaicinoids exerting high fitness costs on the larvae. We pursued the following questions: (1) How is the microbial composition of the larval food related to the composit…

Microbiology (medical)media_common.quotation_subjectZoologyInsectGut floradigestive systemMicrobiology03 medical and health sciencesPrunusfluids and secretionsTephritidaemicrobiotaMetamorphosis030304 developmental biologymedia_common0303 health sciencesLarvabiology030306 microbiologyHost (biology)Tephritidaefungifood and beveragesplant-insect interactionsbiology.organism_classificationAnastrepha ludensQR1-502stomatognathic diseasesgutAnastrepha ludensFrontiers in Microbiology
researchProduct