0000000000628540

AUTHOR

Gabriella Maria Squeo

0000-0002-3032-6955

Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder

BackgroundThe regulation of the chromatin state by epigenetic mechanisms plays a central role in gene expression, cell function, and maintenance of cell identity. Hereditary disorders of chromatin regulation are a group of conditions caused by abnormalities of the various components of the epigenetic machinery, namely writers, erasers, readers, and chromatin remodelers. Although neurological dysfunction is almost ubiquitous in these disorders, the constellation of additional features characterizing many of these genes and the emerging clinical overlap among them indicate the existence of a community of syndromes. The introduction of high-throughput next generation sequencing (NGS) methods f…

research product

DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies

Abstract Purpose Chromatinopathies include more than 50 disorders caused by disease-causing variants of various components of chromatin structure and function. Many of these disorders exhibit unique genome-wide DNA methylation profiles, known as episignatures. In this study, the methylation profile of a large cohort of individuals with chromatinopathies was analyzed for episignature detection. Methods DNA methylation data was generated on extracted blood samples from 129 affected individuals with the Illumina Infinium EPIC arrays and analyzed using an established bioinformatic pipeline. Results The DNA methylation profiles matched and confirmed the sequence findings in both the discovery an…

research product

Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes which can share significant overlap amongst different conditions. In this study we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of…

research product