Numerical-relativity simulations of long-lived remnants of binary neutron star mergers
We analyze the properties of the gravitational wave signal emitted after the merger of a binary neutron star system when the remnant survives for more than a 80 ms (and up to 140ms). We employ four different piecewise polytropic equations of state supplemented by an ideal fluid thermal component. We find that the post-merger phase can be subdivided into three phases: an early post-merger phase (where the quadrupole mode and a few subdominant features are active), the intermediate post-merger phase (where only the quadrupole mode is active) and the late post-merger phase (where convective instabilities trigger inertial modes). The inertial modes have frequencies somewhat smaller than the qua…
Convective Excitation of Inertial Modes in Binary Neutron Star Mergers
We present the first very long-term simulations (extending up to ~140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, t…