0000000000631463

AUTHOR

Cecilia Diceglie

showing 2 related works from this author

MiR675-5p Acts on HIF-1α to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma

2016

Hypoxia is a common feature in solid tumours. In glioma, it is considered the major driving force for tumour angiogenesis and correlates with enhanced resistance to conventional therapies, increased invasiveness and a poor prognosis for patients. Here we describe, for the first time, that miR675-5p, embedded in hypoxia-induced long non-coding RNA H19, plays a mandatory role in establishing a hypoxic response and in promoting hypoxia-mediated angiogenesis. We demonstrated, in vitro and in vivo, that miR675-5p over expression in normoxia is sufficient to induce a hypoxic moreover, miR675-5p depletion in low oxygen conditions, drastically abolishes hypoxic responses including angiogenesis. In …

0301 basic medicinemiRNA675AngiogenesisMedicine (miscellaneous)RNA-binding proteinAngiogenesis; Glioma; HuR; Hypoxia; miRNA675; Optical imaging; VHL; Medicine (miscellaneous); Pharmacology Toxicology and Pharmaceutics (miscellaneous)BiologyToxicology and Pharmaceutics (miscellaneous)Cell LineELAV-Like Protein 1Miceoptical imaging03 medical and health sciencesSettore BIO/13 - Biologia ApplicataStress PhysiologicalIn vivoVHLGliomamicroRNAmedicineAnimalsHumansPharmacology Toxicology and Pharmaceutics (miscellaneous)PharmacologyAngiogenesis; HuR; VHL.; glioma; hypoxia; miRNA675; optical imagingMessenger RNANeovascularization PathologichypoxiaVHL.RNAGliomaHypoxia (medical)Hypoxia-Inducible Factor 1 alpha Subunitmedicine.disease3. Good healthAngiogenesiMicroRNAs030104 developmental biologyImmunologyCancer researchHeterograftsHuRAngiogenesismedicine.symptomResearch PaperTheranostics
researchProduct

Hypoxia-Inducible Factor-1α Activity as a Switch for Glioblastoma Responsiveness to Temozolomide

2018

Rationale: The activity of the transcription factor, hypoxia-inducible factor (HIF)-1?, is a common driver of a number of the pathways involved in the aggressiveness of glioblastomas (GBMs), and it has been suggested that the reduction in this activity observed, soon after the administration of temozolomide (TMZ), can be a biomarker of an early response in GBM models. As HIF-1? is a tightly regulated protein, studying the processes involved in its downregulation could shed new light on the mechanisms underlying GBM sensitivity or resistance to TMZ. Methods: The effect of HIF-1? silencing on cell responsiveness to TMZ was assessed in four genetically different human GBM cell lines by evaluat…

0301 basic medicineCancer Researchapoptosis; chaperone-mediated autophagy activity; hypoxia-inducible factor-1? silencing; temozolomide responsiveness; theranostic biomarkerBiologylcsh:RC254-28203 medical and health scienceshypoxia-inducible factor-1α silencing0302 clinical medicineGliomamedicineGene silencingViability assayTranscription factorOriginal Researchchaperone-mediated autophagy activityTemozolomideAutophagyapoptosismedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenstheranostic biomarker030104 developmental biologyHypoxia-inducible factorsOncologyApoptosis030220 oncology & carcinogenesisCancer researchtemozolomide responsivenessmedicine.drugFrontiers in Oncology
researchProduct