0000000000631614

AUTHOR

Line Hagner Nielsen

Polymeric microcontainers improve oral bioavailability of furosemide.

Microcontainers with an inner diameter of 223 μm are fabricated using the polymer SU-8, and evaluated in vitro, in situ and in vivo for their application as an advanced oral drug delivery system for the poorly water soluble drug furosemide. An amorphous sodium salt of furosemide (ASSF) is filled into the microcontainers followed by applying a lid using Eudragit L100. It is possible to control the drug release in vitro, and in vitro absorption studies show that the microcontainers are not a hindrance for absorption of ASSF. In situ perfusion studies in rats are performed with ASSF-filled microcontainers coated with Eudragit and compared to a furosemide solution. The absorption rate constant …

research product

Cubic Microcontainers Improve In Situ Colonic Mucoadhesion and Absorption of Amoxicillin in Rats

An increased interest in colonic drug delivery has led to a higher focus on the design of delivery devices targeting this part of the gastrointestinal tract. Microcontainers have previously facilitated an increase in oral bioavailability of drugs. The surface texture and shape of microcontainers have proven to influence the mucoadhesion ex vivo. In the present work, these findings were further investigated using an in situ closed-loop perfusion technique in the rat colon, which allowed for simultaneous evaluation of mucoadhesion of the microcontainers as well as drug absorption. Cylindrical, triangular and cubic microcontainers, with the same exterior surface area, were evaluated based on i…

research product