0000000000633835

AUTHOR

Tina Müller

showing 1 related works from this author

Cluster-Localized Sparse Logistic Regression for SNP Data

2012

The task of analyzing high-dimensional single nucleotide polymorphism (SNP) data in a case-control design using multivariable techniques has only recently been tackled. While many available approaches investigate only main effects in a high-dimensional setting, we propose a more flexible technique, cluster-localized regression (CLR), based on localized logistic regression models, that allows different SNPs to have an effect for different groups of individuals. Separate multivariable regression models are fitted for the different groups of individuals by incorporating weights into componentwise boosting, which provides simultaneous variable selection, hence sparse fits. For model fitting, th…

Statistics and ProbabilityBoosting (machine learning)Computer scienceMultivariable calculusComputational BiologyHigh-Throughput Nucleotide SequencingFeature selectionRegression analysisModels TheoreticalLogistic regressioncomputer.software_genrePolymorphism Single NucleotideRegressionComputational MathematicsLogistic ModelsData Interpretation StatisticalGeneticsCluster AnalysisHumansData miningCluster analysisMolecular BiologyUnit-weighted regressioncomputerGenome-Wide Association StudyStatistical Applications in Genetics and Molecular Biology
researchProduct