0000000000633909

AUTHOR

Jean-philip Piquemal

0000-0001-6615-9426

A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations

International audience; A fully polarizable implementation of the hybrid Quantum Mechanics/Molecular Mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent 1 relaxation of both the MM induced dipoles and the QM electronic density is used for ground state energies and extended to electronic excitations in the framework of Time-Dependent Density Functional Theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET30 scale is presented. Th…

research product

Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding

International audience; We present the implementation of a Born-Oppenheimer (BO) hybrid Quantum Mechan-ics/Molecular Mechanics (QM/MM) Molecular Dynamics (MD) strategy using Density Functional Theory (DFT) and the polarizable AMOEBA force field. This approach couples the Gaussian and Tinker suite of programs through a variational formalism allowing for a full self-consistent relaxation of both the AMOEBA induced dipoles and the DFT electronic density at each MD step. As the DFT SCF cycles are the limiting factor in terms of computational efforts and MD stability, we focus on the latter aspect and compare the Time-Reversible BO (TR– BO) and the Extended BO Lagrangian approaches (XL–BO) to th…

research product