0000000000634450

AUTHOR

Jeremy H. Tchaicha

showing 6 related works from this author

Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors

2013

Abstract The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of m…

Lung NeoplasmsT-LymphocytesT cellProgrammed Cell Death 1 ReceptorMice TransgenicLymphocyte ActivationB7-H1 AntigenArticleCell LineProinflammatory cytokineMiceCarcinoma Non-Small-Cell LungTumor MicroenvironmentmedicineAnimalsHumansCytotoxic T cellEpidermal growth factor receptorLung cancerEGFR inhibitorsTumor microenvironmentbiologyOncogenesmedicine.diseaseErbB ReceptorsGene Expression Regulation NeoplasticMice Inbred C57BLmedicine.anatomical_structureOncologyTumor EscapeImmunologyCancer researchbiology.proteinCytokinesTumor EscapeSignal TransductionCancer Discovery
researchProduct

Abstract 1126: Efficacy of BET bromodomain inhibition in Kras-positive non-small cell lung cancer.

2013

Abstract Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as dependency of Kras-dependent tumors on c-Myc function. Unfortunately, drug-like small-molecule inhibitors of KRAS and c-Myc have yet to be realized. The recent discovery in hematologic malignancies that bromodomain inhibition impairs MYC expression and MYC-dependent transcriptional function prompted the possibility of targeting KRAS-driven NSCLC with a potent, prototypical BET bromodomain inhibitor, J…

Genetically modified mouseCancer Researcheducation.field_of_studybusiness.industryMutantPopulationCancermedicine.diseasemedicine.disease_causerespiratory tract diseasesBromodomainOncologyDownregulation and upregulationImmunologymedicineCancer researchKRASLung cancereducationbusinessneoplasmsCancer Research
researchProduct

Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a target in LKB1 Mutant Lung Cancer

2013

Abstract The LKB1/STK11 tumor suppressor encodes a serine/threonine kinase, which coordinates cell growth, polarity, motility, and metabolism. In non–small cell lung carcinoma, LKB1 is somatically inactivated in 25% to 30% of cases, often concurrently with activating KRAS mutations. Here, we used an integrative approach to define novel therapeutic targets in KRAS-driven LKB1-mutant lung cancers. High-throughput RNA interference screens in lung cancer cell lines from genetically engineered mouse models driven by activated KRAS with or without coincident Lkb1 deletion led to the identification of Dtymk, encoding deoxythymidylate kinase (DTYMK), which catalyzes dTTP biosynthesis, as synthetica…

DNA Replicationcongenital hereditary and neonatal diseases and abnormalitiesLung NeoplasmsMutantSTK11BiologyAMP-Activated Protein KinasesProtein Serine-Threonine Kinasesmedicine.disease_causeArticleProto-Oncogene Proteins p21(ras)MiceDeoxythymidylate kinaseAMP-Activated Protein Kinase KinasesRNA interferenceCell Line TumorCarcinoma Non-Small-Cell LungmedicineMetabolomicsThymine NucleotidesAnimalsHumansMolecular Targeted TherapyLung cancerskin and connective tissue diseasesCell DeathModels GeneticKinaseCell growthGenomicsmedicine.diseaseMolecular biologyHigh-Throughput Screening AssaysOncologyGene Knockdown TechniquesCancer researchRNA InterferenceKRASNucleoside-Phosphate KinaseDNA Damage
researchProduct

Efficacy of BET Bromodomain Inhibition in Kras-Mutant Non–Small Cell Lung Cancer

2013

Abstract Purpose: Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that bromodomain and extra-terminal (BET) bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven non–small cell lung cance…

Cancer ResearchLKB1Lung NeoplasmsMutantApoptosisMYCAMP-Activated Protein KinasesProtein Serine-Threonine KinasesBiologyNSCLCmedicine.disease_causeArticleProto-Oncogene Proteins c-mycProto-Oncogene Proteins p21(ras)MiceRNA interferenceCarcinoma Non-Small-Cell LungCell Line TumorKRASmedicineAnimalsRNA Small InterferingLung cancerneoplasmsCell ProliferationMice KnockoutGene knockdownCell growthNuclear ProteinsCancerAzepinesTriazolesBETmedicine.diseaseMolecular biologydigestive system diseasesrespiratory tract diseasesBromodomainOncologyCancer researchRNA InterferenceKRASSignal TransductionTranscription FactorsClinical Cancer Research
researchProduct

Abstract B290: Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors.

2013

Abstract The recent clinical success of therapeutic blockade of the immune checkpoint Programmed Death (PD)-1 in advanced lung cancer patients suggests that mechanisms of immune escape may contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a gene signature indicative of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4) and multiple tumor-promoting inflammatory cytokines. Accordingly, we identified a decrease in the number of cytotoxic T cells and an increase in markers of T cell exhaustion in genetically engineered mouse models (GEMMs) of EGFR-driven lu…

Cancer ResearchTumor microenvironmentbiologyCell growthT cellCancermedicine.diseaseImmune checkpointmedicine.anatomical_structureOncologyImmunologybiology.proteinmedicineCytotoxic T cellEpidermal growth factor receptorLung cancerMolecular Cancer Therapeutics
researchProduct

D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice.

2014

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2R140Q and IDH2R172K alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced ph…

Genetically modified mouseTransgeneMutantCardiomyopathyMice NudeBiologyIDH2Cell LineGlutarateschemistry.chemical_compoundMiceGeneticsmedicineAnimalsHumansMuscular dystrophyMice Inbred BALB CGlycogenGene Expression ProfilingGene Expression Regulation DevelopmentalHeartNeurodegenerative Diseasesmedicine.diseaseMolecular biologyIsocitrate DehydrogenaseIsocitrate dehydrogenasechemistryMutationCardiomyopathiesDevelopmental BiologyResearch PaperGenesdevelopment
researchProduct