0000000000634606

AUTHOR

Xiao Cai

showing 11 related works from this author

Search for the charged lepton flavor violating decay J/ψ→eτ

2021

A search for the charged lepton flavor violating decay J/ψ→e±τ∓ with τ∓→π∓π0ντ is performed with about 10×109 J/ψ events collected with the BESIII detector at the BEPCII. No significant signal is observed, and an upper limit is set on the branching fraction B(J/ψ→e±τ∓)<7.5×10−8 at the 90% confidence level. This improves the previously published limit by two orders of magnitude.

PhysicsParticle physics010308 nuclear & particles physicsMuonepton flavor violating decayNumber01 natural sciencesJ/PsiNO0103 physical sciencesepton flavor violating decay electron-positron collider J/Psielectron-positron colliderHigh Energy Physics::Experimentddc:530010306 general physicsFlavorHiggsLeptonPhysical Review D
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

Study of e+e−→γωJ/ψ and Observation of X(3872)→ωJ/ψ

2019

We study the e^{+}e^{-}→γωJ/ψ process using 11.6  fb^{-1} e^{+}e^{-} annihilation data taken at center-of-mass energies from sqrt[s]=4.008  GeV to 4.600 GeV with the BESIII detector at the BEPCII storage ring. The X(3872) resonance is observed for the first time in the ωJ/ψ system with a significance of more than 5σ. The relative decay ratio of X(3872)→ωJ/ψ and π^{+}π^{-}J/ψ is measured to be R=1.6_{-0.3}^{+0.4}±0.2, where the first uncertainty is statistical and the second systematic (the same hereafter). The sqrt[s]-dependent cross section of e^{+}e^{-}→γX(3872) is also measured and investigated, and it can be described by a single Breit-Wigner resonance, referred to as the Y(4200), with …

Particle physicsElectron–positron annihilationGeneral Physics and Astronomy01 natural sciencesSpectral linelaw.inventionLuminosityNuclear physicsCross section (physics)law0103 physical sciencesInvariant massCollider010306 general physicsPhysicsAnnihilationMass distribution010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)ResonanceBaryonPhase spaceHigh Energy Physics::ExperimentCenter of massAtomic physicsEnergy (signal processing)Storage ringBar (unit)X(3872)Physical Review Letters
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

Radioactivity control strategy for the JUNO detector

2021

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsNuclear engineeringMonte Carlo methodControl (management)measurement methodsFOS: Physical sciencesQC770-798Scintillator7. Clean energy01 natural sciencesNOPE2_2Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Sensitivity (control systems)010306 general physicsPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica Sperimentaleradioactivity [background]suppression [background]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]Nuclear powerthreshold [energy]sensitivityNeutrino Detectors and Telescopes (experiments)GEANTNeutrinobusinessEnergy (signal processing)
researchProduct

Observation of the doubly radiative decay η′→γγπ0

2017

Based on a sample of 1.31 billion J/psi events collected with the BESIII detector, we report the study of the doubly radiative decay eta' -> gamma gamma pi(0) for the first time, where the eta' meson is produced via the J/psi -> gamma eta' decay. The branching fraction of eta' -> gamma gamma pi(0) inclusive decay is measured to be B(eta' -> gamma gamma pi(0))(Incl) = (3.20 +/- 0.07(stat) +/- 0.23(sys)) x 10(-3), while the branching fractions of the dominant process eta' -> gamma omega and the non-resonant component are determined to be B(eta' -> gamma omega) x B(omega -> gamma pi(0)) = (23.7 +/- 1.4(stat) +/- 1.8(sys)) x 10(-4) and B(eta' -> gamma gamma pi(0))(NR) = (6.16 +/- 0.64(stat) +/-…

PhysicsMeson010308 nuclear & particles physicsBranching fractionAstrophysics::High Energy Astrophysical PhenomenaElectron–positron annihilationRadiative decay01 natural sciencesOmegaGamma gammaNuclear physics0103 physical sciencesPiHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysical Review D
researchProduct

Evidence for the decays of and *

2019

Abstract We study the hadronic decays of to the final states and , using an annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCII collider. We find evidence for the decays and with statistical significance of and , respectively. Normalizing to the reference decays and , we obtain the ratios of the branching fractions and to be and , respectively. The upper limits at the 90% confidence level are set to be and . Using BESIII measurements of the branching fractions of the reference decays, we determine % (<0.68%) and % (<1.9%). Here, the first uncertainties are statistical and the second systematic. The obtained branching …

Hadronic decayPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsBranching fractionHadronAstronomy and AstrophysicsLambda01 natural sciencesOmegaCombinatorics0103 physical sciences010306 general physicsInstrumentationChinese Physics C
researchProduct

JUNO sensitivity to low energy atmospheric neutrino spectra

2021

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidenergy resolutionAtmospheric neutrinoQC770-798Astrophysics7. Clean energy01 natural sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)particle source [neutrino]neutrinoneutrino: atmosphere[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cherenkovneutrino/e: particle identificationenergy: low [neutrino]Jiangmen Underground Neutrino ObservatoryPhysicsJUNOphotomultiplierliquid [scintillation counter]primary [neutrino]neutrino: energy spectrumDetectoroscillation [neutrino]neutrinosMonte Carlo [numerical calculations]atmosphere [neutrino]QB460-466observatorycosmic radiationComputer Science::Mathematical Softwareproposed experimentNeutrinonumerical calculations: Monte CarloComputer Science::Machine LearningParticle physicsdata analysis methodAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScintillatorComputer Science::Digital LibrariesNOStatistics::Machine LearningPE2_2neutrino: primaryneutrino: spectrumNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530structure010306 general physicsNeutrino oscillationEngineering (miscellaneous)Cherenkov radiationparticle identification [neutrino/mu]Scintillationneutrino/mu: particle identificationflavordetectorparticle identification [neutrino/e]010308 nuclear & particles physicsneutrino: energy: lowHigh Energy Physics::Phenomenologyspectrum [neutrino]resolutionenergy spectrum [neutrino]flux [neutrino]neutrino: particle source13. Climate actionHigh Energy Physics::Experimentneutrino: oscillationneutrino detector
researchProduct

Neutrino Physics with JUNO

2016

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…

Particle physicsSterile neutrinoNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsGeoneutrinoreactor neutrino experimentPhysics::Instrumentation and DetectorsSolar neutrinomedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciences7. Clean energy01 natural sciencesNOHigh Energy Physics - Experimentneutrino astronomyHigh Energy Physics - Experiment (hep-ex)neutrino physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino mass hierarchy reactor liquid scintillator010306 general physicsJiangmen Underground Neutrino Observatorymedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino physicInstrumentation and Detectors (physics.ins-det)Universereactor neutrino experimentslarge scintillator detectors; neutrino astronomy; neutrino physics; reactor neutrino experiments; Nuclear and High Energy PhysicsSupernovalarge scintillator detectors13. Climate actionPhysics::Space Physicslarge scintillator detectorHigh Energy Physics::ExperimentNeutrinoreactor neutrino experiments; large scintillator detectors; neutrino physics; neutrino astronomy
researchProduct

Measurement of the branching fraction of and search for a CP -violating asymmetry in η′→π+π−e+e− at BESIII

2021

The rare decay η′ → π+π−e+e− is studied using a sample of 1.3×109  J/ψ events collected with the BESIII detector at BEPCII in 2009 and 2012. The branching fraction is measured with improved precisi ...

PhysicsParticle physicsBranching fractionmedia_common.quotation_subjectDetectorSample (graphics)Asymmetrymedia_commonPhysical Review D
researchProduct

Measurement of the Born cross sections for e+e−→η′π+π− at center-of-mass energies between 2.00 and 3.08 GeV

2021

The Born cross sections for the process $e^+e^- \to \eta^\prime \pi^{+}\pi^{-}$ at different center-of-mass energies between $2.00$ and $3.08$~GeV are reported with improved precision from an analysis of data samples collected with the BESIII detector operating at the BEPCII storage ring. An obvious structure is observed in the Born cross section line shape. Fit as a Breit-Wigner resonance, it has a statistical significance of $6.3\sigma$ and a mass and width of $M=(2108\pm46\pm25)$~MeV/$c^2$ and $\Gamma=(138\pm36\pm30)$~MeV, where the uncertainties are statistical and systematic, respectively. These measured resonance parameters agree with the measurements of BABAR in $e^+e^- \to \eta^\pri…

PhysicsParticle physics010308 nuclear & particles physics0103 physical sciencesHigh Energy Physics::ExperimentCenter of mass010306 general physics01 natural sciencesResonance (particle physics)OmegaStorage ringLine (formation)Physical Review D
researchProduct