0000000000634721
AUTHOR
Tao Hu
Study ofJ/ψ→pp¯andJ/ψ→nn¯
The decays J/psi -> p (p) over bar and J/psi -> n (n) over bar have been investigated with a sample of 225.2 x 10(6) J/psi events collected with the BESIII detector at the BEPCII e(+)e(-) collider. The branching fractions are determined to be B(J/psi -> p (p) over bar) = (2.112 +/- 0.004 +/- 0.031 x 10(-3) and B(J/psi -> n (n) over bar) =(2.07 +/- 0.01 +/- 0.17) x 10(-3). Distributions of the angle theta between the proton or antineutron and the beam direction are well described by the form 1 + alpha cos(2)theta, and we find alpha = 0.595 +/- 0.012 +/- 0.015 for J/psi -> p (p) over bar and alpha = 0.50 +/- 0.04 +/- 0.21 for J/psi -> n (n) over bar. Our branching- fraction results suggest a …
Production of ethyl lactate by activated carbon-supported Sn and Zn oxide catalysts utilizing lignocellulosic side streams
Abstract In this study, activated carbon-supported Sn and Zn oxide catalysts were prepared from hydrolysis lignin and used for the conversion of model solutions of trioses, hexoses, and lignocellulosic biomass hydrolysates to ethyl lactate. Both catalysts, SnO2@AC and ZnO@AC, were able to produce ethyl lactate in high yields. SnO2@AC was a more active and selective catalyst in triose (dihydroxyacetone) conversion, providing 99% yield to ethyl lactate. ZnO@AC, by contrast, was more selective in glucose and hydrolysate conversion, with a yield of 60% and 85%, respectively. The ethyl lactate yields were significantly higher than those from the optimized model solution experiments when using Zn…
The Effect of Mechanocatalytic Pretreatment on the Structure and Depolymerization of Willow
In this study, the effect of a mechanocatalytic pretreatment on the structure of willow and sugar release from pretreated willow was explored. In the mechanocatalytic approach, the pretreatment consists of solvent-free impregnation with sulfuric acid and a mechanical treatment with ball milling. Willow sawdust and pretreated samples were analyzed with field emission scanning electron microscope and X-ray diffraction. The products in the sugar solution were determined as the total reducing sugars with the 3,5-dinitrosalicylic acid method and monosaccharides with capillary electrophoresis. According to the results, milling increased the sugar production, depending on the sulfuric acid load. T…
Co-precipitation of Mg-doped Ni0.8Co0.1Mn0.1(OH)₂:effect of magnesium doping and washing on the battery cell performance
Co-precipitation of Ni0.8Co0.1Mn0.1(OH)2 (NCM811) and Mg-doped (0.25 wt% and 0.5 wt%) NCM811 precursors is carried out from concentrated metal sulphate solutions. In this paper, the aim is to study the role of magnesium dopant in the co-precipitation step of NCM811, the cathode active material and further the Li-ion battery cell performance. Based on the results, magnesium was fully co-precipitated in the NCM811 precursors, as expected from thermodynamic calculations. The presence of magnesium in these precursors was also confirmed by several characterization methods and magnesium was evenly distributed in the sample. It was observed that tapped density decreased and surface area increased …
Use of Calcined Dolomite as Chemical Precipitant in the Simultaneous Removal of Ammonium and Phosphate from Synthetic Wastewater and from Agricultural Sludge
Phosphorus as phosphate and nitrogen as ammonium or nitrate are the main nutrients in wastewaters and agricultural sludges. They runoff easily to waterways and cause eutrophication in water bodies. However, ammonium and phosphate could be precipitated simultaneously and used as recycled nutrients. In this research, dolomite calcined at 650 °
The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.
Abstract The aim of this research was to investigate sulphate removal from mine water by precipitation as ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and the utilisation of the precipitate as a sorbent for arsenate removal. The mine water sulphate concentration was reduced by 85–90% from the initial 1400 mg/L during ettringite precipitation depending on the treatment method. The precipitation conditions were also simulated with MINEQL + software, and the computational results were compared with the experimental results. The precipitated solids were characterised with X-ray diffraction and a scanning electron microscope. The precipitated solids were tested as sorbents for arsenate removal from the…
Study of Ni, Pt, and Ru Catalysts on Wood-based Activated Carbon Supports and their Activity in Furfural Conversion to 2-Methylfuran
Bio‐based chemicals can be produced from furfural through hydrotreatment. In this study, 2‐methylfuran (MF), a potential biofuel component, was produced with Pt, Ru, and Ni catalysts supported on wood‐based activated carbons. The catalytic hydrotreatment experiments were conducted in a batch reactor at 210–240 °C with 2‐propanol as solvent and 40 bar H2 pressure. Two types of activated carbon supports were prepared by carbonization and activation of lignocellulosic biomass (forest‐residue‐based birch and spruce from Finland). Both types of activated carbons were suitable as catalyst supports, giving up to 100 % furfural conversions. The most important factors affecting the MF yield were the…
Carbons from second generation biomass as sustainable supports for catalytic systems
In this study activated carbons were produced from the wood of three different wood species (pine, birch, spruce). The resulting activated carbons were characterized in bulk for ash content, carbon content (elemental analyses), specific surface area, and pore size distribution, and at the surface by measuring the autogenerated pH and studying their structure by XPS. All the samples presented high surface areas and appeared to be mesoporous materials (mesopores >80%). The carbons were then used as support for AuPt nanoparticles and tested in the liquid phase oxidation of glycerol (GLY) and in the hydrogenation of levulinic acid (LA), two important chemicals from cellulose-based biomass. The …
The use of calcined paper mill sludge as a chemical precipitant in the simultaneous removal of ammonium and phosphate : paper mill waste recycling and reuse
Currently, recycling and re-use of materials is extremely important due to the diminishing of natural resources. The objective of the European Union’s circular economy strategy is to increase recycling and the use of industrial waste materials and side streams as secondary raw materials. In this study, a chemical precipitation method to simultaneously remove ammonium nitrogen and phosphate from the liquid phase of anaerobic digestate using calcined paper mill sludge was studied. Papermill sludge is a waste material that forms in the paper-making process. In addition, commercial calcium oxide (CaO) was used as a reference precipitant. The suitability of the formed precipitate’s composition f…
Optimized morphology and tuning the Mn3+ content of LiNi0.5Mn1.5O4 cathode material for li-ion batteries
The advantages of cobalt-free, high specific capacity, high operating voltage, low cost, and environmental friendliness of spinel LiNi0.5Mn1.5O4 (LNMO) material make it one of the most promising cathode materials for next-generation lithium-ion batteries. The disproportionation reaction of Mn3+ leads to Jahn–Teller distortion, which is the key issue in reducing the crystal structure stability and limiting the electrochemical stability of the material. In this work, single-crystal LNMO was synthesized successfully by the sol-gel method. The morphology and the Mn3+ content of the as-prepared LNMO were tuned by altering the synthesis temperature. The results demonstrated that the LNMO_11…
Use of Fe and Al containing electrocoagulation sludge as an adsorbent and a catalyst in water treatment
In this study, three different electrocoagulation (EC) sludges were studied as an adsorbent (removal of humic acids) and as a catalyst [catalytic wet peroxide oxidation (CWPO) of bisphenol A (BPA)]. The sludges originated from electrocoagulation process in which aluminum (Al) and iron (Fe) electrodes were used for the treatment of mining industry wastewater. All the materials were used as dried sludge and calcined material. The stability of these materials was studied in neutral and alkaline conditions with analysis of the leached iron content in solution. Based on the EC sludge characterization with X-ray fluorescence (XRF), X-ray diffractometer (XRD), and diffuse-reflectance infrared Four…
Lignin-based activated carbon-supported metal oxide catalysts in lactic acid production from glucose
Abstract In this study, heterogeneous biomass-based activated carbon-supported metal oxide catalysts were prepared and tested for lactic acid production from glucose in aqueous solution. Activated carbons were produced from hydrolysis lignin by chemical (ZnCl2) or steam activation and modified with a nitric acid treatment and Sn, Al, and Cr chlorides to obtain carbon-based metal oxide catalysts. The modification of the carbon support by nitric acid treatment together with Sn and Al oxides led to an increase in lactic acid yield. The highest lactic acid yield (42 %) was obtained after 20 min at 180 °C with the Sn/Al (5/2.5 wt.%) catalyst on steam-activated carbon treated by nitric acid. Reus…
Water leaching of roasted vanadium slag : Desiliconization and precipitation of ammonium vanadate from vanadium solution
This research investigated water leaching of roasted vanadium slag and studied the effects of leaching parameters, such as agitation speed, temperature, liquid-to-solid ratio, and leaching time. Further, solution purification via desiliconization and precipitation of ammonium vanadate were studied using the vanadium solution obtained from the water leaching of roasted vanadium slag. Vanadium solution contains residual silicon (1.67 g/L), which should be removed before ammonium vanadate precipitation. Based on the results, vanadium can be effectively recovered from vanadium slag and a recovery efficiency of 96.9% was obtained under optimal water leaching conditions. During solution purificat…
Bisphenol A removal from water by biomass-based carbon: isotherms, kinetics and thermodynamics studies
Biomass-based carbon was modified and used as an efficient bisphenol A (BPA) sorbent. The simple and environmentally friendly modification method produced sorbent with a capacity of 41.5 mg/g. The ...
Calibration strategy of the JUNO experiment
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]
Conversion of furfural to 2-methylfuran over CuNi catalysts supported on biobased carbon foams
In this study, carbon foams prepared from the by-products of the Finnish forest industry, such as tannic acid and pine bark extracts, were examined as supports for 5/5% Cu/Ni catalysts in the hydrotreatment of furfural to 2-methylfuran (MF). Experiments were conducted in a batch reactor at 503 K and 40 bar H2. Prior to metal impregnation, the carbon foam from tannic acid was activated with steam (S1), and the carbon foam from pine bark extracts was activated with ZnCl2 (S2) and washed with acids (HNO3 or H2SO4). For comparison, a spruce-based activated carbon (AC) catalyst and two commercial AC catalysts as references were investigated. Compressive strength of the foam S2 was 30 times great…
Precipitation of potassium as hazenite from washing water of spent alkaline batteries
Hazenite (KNaMg2(PO4)2 × 14 H2O), a new type of struvite mineral, was precipitated from the potassium-rich washing water of spent alkaline battery black mass. Hazenite can be used as a fertilizer, which would be an additional benefit derived from the sustainable recovery of battery materials. Precipitation experiments were performed using different pH values (9.5–12), Mg:K:PO4 ratios ((1.0–1.5):1:(1.0–1.5)) and temperatures (10–40 °C). Based on the results, hazenite precipitated in a wide pH range under alkaline conditions. The precipitation kinetics were fast, and the purity of the hazenite was high. Overall, hazenite can be precipitated at room temperature without the addition of excess c…
Carbons from second generation biomass as sustainable supports for catalytic systems
Abstract In this study activated carbons were produced from the wood of three different wood species (pine, birch, spruce). The resulting activated carbons were characterized in bulk for ash content, carbon content (elemental analyses), specific surface area, and pore size distribution, and at the surface by measuring the autogenerated pH and studying their structure by XPS. All the samples presented high surface areas and appeared to be mesoporous materials (mesopores >80%). The carbons were then used as support for AuPt nanoparticles and tested in the liquid phase oxidation of glycerol (GLY) and in the hydrogenation of levulinic acid (LA), two important chemicals from cellulose-based biom…
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS
The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4
Direct acid-catalysed mechanical depolymerisation of fibre sludge to reducing sugars using planetary milling
Abstract This study performed a direct solvent-free acid-catalysed mechanical depolymerisation of fibre sludge to reducing sugars which involves one step of acid milling in a planetary mill. The common reported ‘solvent-free’ mechanocatalytic depolymerisation of lignocellulose which includes 1) acid impregnation, 2) vacuum evaporation and 3) mechanocatalytic depolymerisation was also performed as a reference. The major converted monosaccharides were determined by capillary electrophoresis and the results of total reducing sugar (TRS) yields were carried out based on the 3,5-dinitrosalicylic acid (DNS) method. The results showed that the TRS conversion of direct acid-catalysed mechanical dep…
Acid-catalyzed mechanocatalytic pretreatment to improve sugar release from birch sawdust : Structural and chemical aspects
This study examined acid-catalyzed mechanocatalytic pretreatment of birch sawdust without a separate impregnation step. Catalyst amount and pretreatment time were the key variables. Pretreated material was mixed with water for hydrolysis (100 °C, 60 min). The efficient release of total reducing sugars from birch sawdust is significant to the path towards biofuels and biochemicals. Based on the results, the structure and surface of birch sawdust changed as a function of mechanocatalytic pretreatment. Milling time caused significant transformations in birch structure and also increased the yields of reducing sugars. The highest yield of total reducing sugar from pretreated sawdust was 23.0% a…
Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst
Selective and efficient dehydration of glucose to 5-hydroxymethylfurfural (HMF) has been widely explored research problem recently, especially from the perspective of more sustainable heterogeneous catalysts. In this study, activated carbon was first produced from a lignocellulosic waste material, birch sawdust. Novel heterogeneous catalysts were then prepared from activated carbon by adding Lewis or Brønsted acid sites on the carbon surface. Prepared catalysts were used to convert glucose to HMF in biphasic water:THF system at 160 °C. The highest HMF yield and selectivity, 51% and 78%, respectively, were obtained in 8 h with a catalytic mixture containing both Lewis and Brønsted acid sites…
Observation of Two NewN*Resonances in the Decayψ(3686)→pp¯π0
Based on 106 x 10(6)psi(3686) events collected with the BESIII detector at the BEPCII facility, a partial wave analysis of psi(3686) -> p (p) over bar pi(0) is performed. The branching fraction of this channel has been determined to be B psi(3686) -> p (p) over bar pi(0) = (1.65 +/- 0.03 +/- 0.15) x 10(-4). In this decay, 7 N* intermediate resonances are observed. Among these, two new resonances, N(2300) and N(2570) are significant, one 1/2(+) resonance with a mass of 2300(-30-0)(+40+109) MeV/c(2) and width of 340(-30-58)(+30+110) MeV/c(2), and one 5/2(-) resonance with a mass of 2570(-10-10)(+19+34) MeV/c(2) and width of 250(-24-21)(+14+69) MeV/c(.)(2) For the remaining 5 N* intermediate r…
Determination of the number of J/psi events with J/psi -> inclusive decays
The number of J/psi events collected with the BESIII detector at the BEPC II from June 12 to July 28, 2009 is determined to be (225.3 +/- 2.8) x 10(6) using J/psi -> inclusive events, where the uncertainty is the systematic error and the statistical one is negligible.
Radioactivity control strategy for the JUNO detector
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…
Biomass-based composite catalysts for catalytic wet peroxide oxidation of bisphenol A : preparation and characterization studies
Abstract The wet granulation process was used to prepare new, efficient, and cost-effective granular biomass-based composite catalysts for catalytic wet peroxide oxidation (CWPO) of bisphenol A (BPA). The most stable composite granules was prepared by mixing biomass-based carbon residue (CR) with metakaolin (MK) combined with calcium oxide (CaO) or cement and a solvent (NaOH or KOH). For all the prepared composite granules, the optimized binding agents to carbon ratio was 0.3, the solvent to carbon ratio 1.2, and the agitation rate 1200 rpm. The specific surface area of the prepared catalysts was 152–205 m2/g. The composite granular catalyst (CR + MK + CaO + NaOH) had the most durable and s…
Acid-catalyzed mechanocatalytic pretreatment to improve sugar release from birch sawdust: Structural and chemical aspects
Abstract This study examined acid-catalyzed mechanocatalytic pretreatment of birch sawdust without a separate impregnation step. Catalyst amount and pretreatment time were the key variables. Pretreated material was mixed with water for hydrolysis (100 °C, 60 min). The efficient release of total reducing sugars from birch sawdust is significant to the path towards biofuels and biochemicals. Based on the results, the structure and surface of birch sawdust changed as a function of mechanocatalytic pretreatment. Milling time caused significant transformations in birch structure and also increased the yields of reducing sugars. The highest yield of total reducing sugar from pretreated sawdust wa…
The use of industrial waste materials for the simultaneous removal of ammonium nitrogen and phosphate from the anaerobic digestion reject water
The European Union’s circular economy strategy aims to increase the recycling and re-use of products and waste materials. According to the strategy, the use of industry waste materials and side flows is required to be more effective. In this research, a chemical precipitation method to simultaneously remove ammonium and phosphate from the reject water of anaerobic digestion plant using calcined paper mill sludge and fly ash as a precipitant, was tested. Paper mill sludge is a waste material formed in the paper-making process, and fly ash is another waste material formed in the power plant. Objective of this research was to test whether these industrial waste streams could be used as low cos…
Correlation of aluminum doping and lithiation temperature with electrochemical performance of LiNi1-xAlxO2 cathode material
Abstract This article presents a process for producing LiNi1-xAlxO2 (0 < × < 0.05) cathode material with high capacity and enhanced cycle properties of 145 mAh/g after 600 cycles. The LiNi1-xAlxO2 (0 < × < 0.05) cathode material is prepared by mixing coprecipitated Ni(OH)2 with LiOH and Al(OH)3, followed by lithiation at temperature range of 650–710 °C, after which any residual lithium from lithiation is washed from the particle surfaces. Electrochemical performance was studied within full-cell and half-cell application; in addition, different material characterization methods were carried out to explain structure changes when certain amount of aluminum is introduced in the …
Observation of the doubly radiative decay η′→γγπ0
Based on a sample of 1.31 billion J/psi events collected with the BESIII detector, we report the study of the doubly radiative decay eta' -> gamma gamma pi(0) for the first time, where the eta' meson is produced via the J/psi -> gamma eta' decay. The branching fraction of eta' -> gamma gamma pi(0) inclusive decay is measured to be B(eta' -> gamma gamma pi(0))(Incl) = (3.20 +/- 0.07(stat) +/- 0.23(sys)) x 10(-3), while the branching fractions of the dominant process eta' -> gamma omega and the non-resonant component are determined to be B(eta' -> gamma omega) x B(omega -> gamma pi(0)) = (23.7 +/- 1.4(stat) +/- 1.8(sys)) x 10(-4) and B(eta' -> gamma gamma pi(0))(NR) = (6.16 +/- 0.64(stat) +/-…
The Use of Ca- and Mg-Rich Fly Ash as a Chemical Precipitant in the Simultaneous Removal of Nitrogen and Phosphorus - Recycling and Reuse
The European Union’s circular economy strategy aims to increase the recycling and re-use of products and waste materials. According to the strategy, the use of industry waste material should be more effective. A chemical precipitation method to simultaneously remove phosphorus and nitrogen from synthetic (NH4)2HPO4 solution and the liquid phase of anaerobic digestate using fly ash as a precipitant was tested. Fly ash is a waste material formed in the power plant process. It mainly contains calcium oxide (CaO) and magnesium oxide (MgO). Saturated precipitant solution was prepared from fly ash, which was added in small proportions to (NH4)2HPO4 solution during the experiment. Fly ash’s effect…
First Observation of theM1Transitionψ(3686)→γηc(2S)
Using a sample of 106×10(6) ψ(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: ψ(3686)→γη(c)(2S). Analyses of the processes ψ(3686)→γη(c)(2S) with η(c)(2S)→K(S)(0)K(±)π(∓) and K(+)K(-)π(0) give an η(c)(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the η(c)(2S) mass (M(η(c)(2S))=3637.6±2.9(stat)±1.6(syst) MeV/c(2)), width (Γ(η(c)(2S))=16.9±6.4(…
Precise Measurement of the e+e−→π+π−J/ψ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV
The cross section for the process e(+)e(-)-> pi(+) pi(-) J/psi is measured precisely at center-of-mass energies from 3.77 to 4.60 GeV using 9 fb(-1) of data collected with the BESIII detector operating at the BEPCII storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of (222.0 +/- 3.1 +/- 1.4) MeV/ c(2) and a width of (44.1 +/- 4.3 +/- 2.0)MeV, while the second one has a mass of (4320.0 +/- 10.4 +/- 7.0)MeV/c(2) and a width of (101.4(- 19.7)(+25.3) +/- 10.2) MeV, where the first errors are statistical and second ones are systematic. The first resonance agrees with the Y(4260) resonance reported by previous experiments. The precisi…
Effects of Lithium Source and Content on the Properties of Li-Rich Layered Oxide Cathode Materials
Lithium-rich layered oxide (LLO) are considered high-capacity cathode materials for next-generation lithium-ion batteries. In this study, LLO cathode materials were synthesized via the hydroxide coprecipitation method followed by a two-step lithiation process using different lithium contents and lithium sources. The effects of lithium content and lithium source on structure and electrochemical performance were investigated. This study demonstrated the clear impact of Li/TM ratio on electrochemical performance. Lower Li/TM ratio reduced the irreversible capacity loss in the first cycle and provided better cycling stability among all samples. The best results exhibited an initial discharge ca…
JUNO sensitivity to low energy atmospheric neutrino spectra
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…
Removal of ammonium from municipal wastewater with powdered and granulated metakaolin geopolymer
Abstract Ammonium (NH₄⁺) removal from municipal wastewater poses challenges with the commonly used biological processes. Especially at low wastewater temperatures, the process is frequently ineffective and difficult to control. One alternative is to use ion-exchange. In the present study, a novel NH4+ ion-exchanger, metakaolin geopolymer (MK-GP), was prepared, characterised, and tested. Batch experiments with powdered MK-GP indicated that the maximum exchange capacities were 31.79, 28.77, and 17.75 mg/g in synthetic, screened, and pre-sedimented municipal wastewater, respectively, according to the Sips isotherm (R² ≥ 0.91). Kinetics followed the pseudo-second-order rate equation in all case…
H2-TPR, XPS and TEM Study of the Reduction of Ru and Re promoted Co/γ-Al2O3, Co/TiO2 and Co/SiC Catalysts
<p class="1Body">Effects of Ru and Re promoters on Co-CoO<sub>x </sub>catalysts supported on γ-Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> and SiC were investigated to improve the understanding of the role of promoters of the active phase of Co-CoO<sub>x</sub>-Ru and Co-CoO<sub>x</sub>-Re. The influence of promoter addition on the composition and activity of the catalysts was characterized by several methods, such as H<sub>2</sub>-TPR, XPS, chemisorption and TEM. Furthermore, the role of support and metal-support interaction was especially studied and different support materials were compared.</p&g…
Utilisation of barium-modified analcime in sulphate removal: Isotherms, kinetics and thermodynamics studies
Abstract Analcime and commercial zeolite were employed as a precursor for preparing sorbent material for SO42− removal over barium modification. Three sorbents were prepared: barium-modified analcime (ANA-Na-Ba), barium-modified acid-washed analcime (ANA-Ac-Na-Ba) and barium-modified zeolite (ZSM5-Na-Ba). Of the prepared materials, ANA-Ac-Na-Ba was the most efficient sorbent material for SO42− removal, with a maximum sorption uptake of 13.7 mg g−1 at room temperature. Batch sorption experiments were performed to evaluate the effect of initial pH, initial SO42− concentration, sorbent dosage, temperature and contact time of sorption. Several isotherms were applied to describe the experimental…
Neutrino Physics with JUNO
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…
Communication-Efficient Federated Learning in Channel Constrained Internet of Things
Federated learning (FL) is able to utilize the computing capability and maintain the privacy of the end devices by collecting and aggregating the locally trained learning model parameters while keeping the local personal data. As the most widely-used FL framework,Jederated averaging (FedAvg) suffers an expensive communication cost especially when there are large amounts of devices involving the FL process. Moreover, when considering asynchronous FL, the slowest device becomes the bottleneck for the cask effect and determines the overall latency. In this work, we propose a communication-efficient federated learning framework with partial model aggregation (CE-FedPA) algorithm to utilize comp…
Carbocatalytic Oxidative Dehydrogenative Couplings of (Hetero)Aryls by Oxidized Multi‐Walled Carbon Nanotubes in Liquid Phase
HNO3-oxidized carbon nanotubes catalyze oxidative dehydrogenative (ODH) carbon-carbon bond formation between electron-rich (hetero)aryls with O-2 as a terminal oxidant. The recyclable carbocatalytic method provides a convenient and an operationally easy synthetic protocol for accessing various benzofused homodimers, biaryls, triphenylenes, and related benzofused heteroaryls that are highly useful frameworks for material chemistry applications. Carbonyls/quinones are the catalytically active site of the carbocatalyst as indicated by model compounds and titration experiments. Further investigations of the reaction mechanism with a combination of experimental and DFT methods support the compet…
Search for a light exotic particle inJ/ψradiative decays
Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -> pi^+ pi^- J/psi, J/psi -> gamma X, X -> mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -> gamma A^0, A^0 -> mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)<3.0 GeV/c^2. On…
Biomass-based composite catalysts for catalytic wet peroxide oxidation of bisphenol A:preparation and characterization studies
The wet granulation process was used to prepare new, efficient, and cost-effective granular biomass-based composite catalysts for catalytic wet peroxide oxidation (CWPO) of bisphenol A (BPA). The most stable composite granules was prepared by mixing biomass-based carbon residue (CR) with metakaolin (MK) combined with calcium oxide (CaO) or cement and a solvent (NaOH or KOH). For all the prepared composite granules, the optimized binding agents to carbon ratio was 0.3, the solvent to carbon ratio 1.2, and the agitation rate 1200 rpm. The specific surface area of the prepared catalysts was 152–205 m2/g. The composite granular catalyst (CR + MK + CaO + NaOH) had the most durable and stable str…
Efficient removal of bisphenol A from wastewaters: Catalytic wet air oxidation with Pt catalysts supported on Ce and Ce–Ti mixed oxides
Catalytic wet air oxidation (CWAO) of an aqueous solution of bisphenol A (BPA) was investigated at 160 ℃ and 2.0 MPa of air in a batch reactor. Activity of supported platinum catalysts (2.5 wt%), prepared by wet impregnation, was compared with pure cerium and cerium–titanium oxide catalysts. Supported platinum catalysts showed higher activities in the removal of BPA than pure CeO2, Ce0.8Ti0.2O2 and Ce0.2Ti0.8O2. The oxidation reaction was followed the pseudo-first order rate law and the highest BPA removal, 97% and 95%, was achieved with Pt/CeO2 and Pt/Ce0.8Ti0.2O2 catalysts respectively. The CWAO of BPA aqueous solution was not a surface area specific reaction but the more important factor…
Precise Measurement of the e+e− → π+π−J/ψ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV
The cross section for the process e(+)e(-)-> pi(+) pi(-) J/psi is measured precisely at center-of-mass energies from 3.77 to 4.60 GeV using 9 fb(-1) of data collected with the BESIII detector operating at the BEPCII storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of (222.0 +/- 3.1 +/- 1.4) MeV/ c(2) and a width of (44.1 +/- 4.3 +/- 2.0)MeV, while the second one has a mass of (4320.0 +/- 10.4 +/- 7.0)MeV/c(2) and a width of (101.4(- 19.7)(+25.3) +/- 10.2) MeV, where the first errors are statistical and second ones are systematic. The first resonance agrees with the Y(4260) resonance reported by previous experiments. The precisi…
Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries
This article presents the electrochemical results that can be achieved for pure LiNiO2 cathode material prepared with a simple, low-cost, and efficient process. The results clarify the roles of the process parameters, precipitation temperature, and lithiation temperature in the performance of high-quality LiNiO2 cathode material. Ni(OH)2 with a spherical morphology was precipitated at different temperatures and mixed with LiOH to synthesize the LiNiO2 cathode material. The LiNiO2 calcination temperature was optimized to achieve a high initial discharge capacity of 231.7 mAh/g (0.1 C/2.6 V) with a first cycle efficiency of 91.3% and retaining a capacity of 135 mAh/g after 400 cycles. These a…
Bisphenol A removal from water by biomass-based carbon : Isotherms, kinetics and thermodynamics studies
Biomass-based carbon was modified and used as an efficient bisphenol A (BPA) sorbent. The simple and environmentally friendly modification method produced sorbent with a capacity of 41.5 mg/g. The raw material was modified with FeCl3 (Fe-CR), treated with hydrochloric acid (H-CR) or modified with CaCl2 (Ca-CR). Batch sorption experiments were performed to evaluate the effects of the initial pH, sorbent dosage, temperature, and contact time on BPA removal. BPA removal with modified carbons was notably higher than that with unmodified carbon. All sorbent materials exhibited very high sorption capacities and compared favourably to materials reported in the literature. Several isotherms were ap…
Conversion of Xylose to Furfural over Lignin-Based Activated Carbon-Supported Iron Catalysts
In this study, conversion of xylose to furfural was studied using lignin-based activated carbon-supported iron catalysts. First, three activated carbon supports were prepared from hydrolysis lignin with different activation methods. The supports were modified with different metal precursors and metal concentrations into five iron catalysts. The prepared catalysts were studied in furfural production from xylose using different reaction temperatures and times. The best results were achieved with a 4 wt% iron-containing catalyst, 5Fe-ACs, which produced a 57% furfural yield, 92% xylose conversion and 65% reaction selectivity at 170 °
Removal of ammonium ions from aqueous solutions using alkali-activated analcime as sorbent
Five alkali-activated analcime (ANA) sorbents (ANA-MK 1, ANA 2, ANA 3, ANA-MK 4, and ANA-MK 5) were developed for ammonium (NH4+) ion removal. Acid treatment and calcination were used as pre-treatments for analcime, and metakaolin (MK) was used as a blending agent in three sorbents. Sorption experiments were performed to evaluate the effects of sorbent dosage (1–20 g L−1), initial NH4+ ion concentration (5–1000 g L−1), and contact time (1 min–24 h). ANA-MK 1, ANA 2, and ANA-MK 4 were the most efficient sorbents for NH4+ ion removal, with a maximum experimental sorption uptake of 29.79, 26.00, and 22.24 mg g−1, respectively. ANA 3 and ANA-MK 5 demonstrated…
Alkali-Activated Adsorbents from Slags: Column Adsorption and Regeneration Study for Nickel(II) Removal
Alkali-activated adsorbents were synthesized by mixing three different slags from the steel industry: blast furnace slag (BFS), ladle slag (LS), and Lintz–Donawitz converter slag (LD). These powdered slag-based geopolymers (GP) were used to remove nickel(II) from aqueous solutions in fixed-bed column studies. The experiments were conducted in pH 6 using a phosphate buffer with initial nickel(II) concentration of 50 mg/L. Samples were taken at time intervals of between 5 and 90 min. Three adsorption–desorption cycles were implemented with a flow rate of 5 mL/min. The geopolymers were characterized by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray powder diffraction (XRD), Field Emissi…
Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst
Abstract Selective and efficient dehydration of glucose to 5-hydroxymethylfurfural (HMF) has been widely explored research problem recently, especially from the perspective of more sustainable heterogeneous catalysts. In this study, activated carbon was first produced from a lignocellulosic waste material, birch sawdust. Novel heterogeneous catalysts were then prepared from activated carbon by adding Lewis or Bronsted acid sites on the carbon surface. Prepared catalysts were used to convert glucose to HMF in biphasic water:THF system at 160 °C. The highest HMF yield and selectivity, 51% and 78%, respectively, were obtained in 8 h with a catalytic mixture containing both Lewis and Bronsted a…
Bisphenol A removal from water by biomass-based carbon: isotherms, kinetics and thermodynamics studies
Biomass-based carbon was modified and used as an efficient bisphenol A (BPA) sorbent. The simple and environmentally friendly modification method produced sorbent with a capacity of 41.5 mg/g. The raw material was modified with FeCl3 (Fe-CR), treated with hydrochloric acid (H-CR) or modified with CaCl2 (Ca-CR). Batch sorption experiments were performed to evaluate the effects of the initial pH, sorbent dosage, temperature, and contact time on BPA removal. BPA removal with modified carbons was notably higher than that with unmodified carbon. All sorbent materials exhibited very high sorption capacities and compared favourably to materials reported in the literature. Several isotherms were ap…