0000000000636263
AUTHOR
A.p. Weaver
Direct measurement of the mass difference of $^{72}$As-$^{72}$Ge rules out $^{72}$As as a promising $\beta$-decay candidate to determine the neutrino mass
We report the first direct determination of the ground-state to ground-state electron-capture $Q$-value for the $^{72}$As to $^{72}$Ge decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$-value was measured to be 4343.596(75)~keV, which is more than a 50-fold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$-value was found to be 12.4(40)~keV (3.1 $\sigma$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$-value value combined with the level scheme of $^{72}$Ge from $\gamma$-ray spectroscopy, we confirm that th…
Dy159 Electron-Capture: A New Candidate for Neutrino Mass Determination
International audience; The ground state to ground state electron-capture Q value of Dy159 (3/2-) has been measured directly using the double Penning trap mass spectrometer JYFLTRAP. A value of 364.73(19) keV was obtained from a measurement of the cyclotron frequency ratio of the decay parent Dy159 and the decay daughter Tb159 ions using the novel phase-imaging ion-cyclotron resonance technique. The Q values for allowed Gamow-Teller transition to 5/2- and the third-forbidden unique transition to 11/2+ state with excitation energies of 363.5449(14) keV and 362.050(40) keV in Tb159 were determined to be 1.18(19) keV and 2.68(19) keV, respectively. The high-precision Q value of transition 3/2-…