0000000000637877
AUTHOR
Yulan Li
Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy
We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature ( T c ) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO 3 layers in BaTiO 3 /SrTiO 3 superlattices are not only ferroelectric (with T c as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO 3 layers adjacent to them. T c was tuned by ∼500 kelvin by varying the thicknesses of the BaTiO 3 and SrTiO 3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.
A Time Projection Chamber with GEM-Based Readout
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.