0000000000638306

AUTHOR

Tommaso Nottoli

Second-Order CASSCF Algorithm with the Cholesky Decomposition of the Two-Electron Integrals

In this contribution, we present the implementation of a second-order complete active space–self-consistent field (CASSCF) algorithm in conjunction with the Cholesky decomposition of the two-electron repulsion integrals. The algorithm, called norm-extended optimization, guarantees convergence of the optimization, but it involves the full Hessian and is therefore computationally expensive. Coupling the second-order procedure with the Cholesky decomposition leads to a significant reduction in the computational cost, reduced memory requirements, and an improved parallel performance. As a result, CASSCF calculations of larger molecular systems become possible as a routine task. The performance …

research product

A black-box, general purpose quadratic self-consistent field code with and without Cholesky Decomposition of the two-electron integrals

We present the implementation of a quadratically convergent self-consistent field (QCSCF) algorithm based on an adaptive trust-radius optimisation scheme for restricted open-shell Hartree���Fock (ROHF), restricted Hartree���Fock (RHF), and unrestricted Hartree���Fock (UHF) references. The algorithm can exploit Cholesky decomposition (CD) of the two-electron integrals to allow calculations on larger systems. The most important feature of the QCSCF code lies in its black-box nature ��� probably the most important quality desired by a generic user. As shown for pilot applications, it does not require one to tune the self-consistent field (SCF) parameters (damping, Pulay's DIIS, and other simil…

research product