0000000000639920
AUTHOR
Ali Akbari
Challenges in Truncating the Hierarchy of Time-Dependent Reduced Density Matrices Equations: Open Problems
In this work, we analyze the Born, Bogoliubov, Green, Kirkwood and Yvon (BBGKY) hierarchy of equations for describing the full time-evolution of a many-body fermionic system in terms of its reduced density matrices (at all orders). We provide an exhaustive study of the challenges and open problems linked to the truncation of such hierarchy of equations to make them practically applicable. We restrict our analysis to the coupled evolution of the one- and two-body reduced density matrices, where higher order correlation effects are embodied into the approximation used to close the equations. We prove that within this approach, the number of electrons and total energy are conserved, regardless…
Challenges in truncating the hierarchy of time-dependent reduced density matrices equations
In this work, we analyze the Born, Bogoliubov, Green, Kirkwood, and Yvon (BBGKY) hierarchy of equations for describing the full time evolution of a many-body fermionic system in terms of its reduced density matrices (at all orders). We provide an exhaustive study of the challenges and open problems linked to the truncation of such a hierarchy of equations to make them practically applicable. We restrict our analysis to the coupled evolution of the one- and two-body reduced density matrices, where higher-order correlation effects are embodied into the approximation used to close the equations. We prove that within this approach, the number of electrons and total energy are conserved, regardl…