0000000000641581

AUTHOR

Mohammadreza Koopialipoor

Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks

There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, …

research product

Novel fuzzy-based optimization approaches for the prediction of ultimate axial load of circular concrete-filled steel tubes

An accurate estimation of the axial compression capacity of the concrete-filled steel tubular (CFST) column is crucial for ensuring the safety of structures containing them and preventing related failures. In this article, two novel hybrid fuzzy systems (FS) were used to create a new framework for estimating the axial compression capacity of circular CCFST columns. In the hybrid models, differential evolution (DE) and firefly algorithm (FFA) techniques are employed in order to obtain the optimal membership functions of the base FS model. To train the models with the new hybrid techniques, i.e., FS-DE and FS-FFA, a substantial library of 410 experimental tests was compiled from openly availa…

research product

Genetic justification of severe COVID-19 using a rigorous algorithm

Recent studies suggest excessive complement activation in severe coronavirus disease-19 (COVID-19). The latter shares common characteristics with complement-mediated thrombotic microangiopathy (TMA). We hypothesized that genetic susceptibility would be evident in patients with severe COVID-19 (similar to TMA) and associated with disease severity. We analyzed genetic and clinical data from 97 patients hospitalized for COVID-19. Through targeted next-generation-sequencing we found an ADAMTS13 variant in 49 patients, along with two risk factor variants (C3, 21 patients; CFH,34 patients). 31 (32%) patients had a combination of these, which was independently associated with ICU hospitalization (…

research product