0000000000644526

AUTHOR

Yohei Ema

Higgs-Inflaton Mixing and Vacuum Stability

The quartic and trilinear Higgs field couplings to an additional real scalar are renormalizable, gauge and Lorentz invariant. Thus, on general grounds, one expects such couplings between the Higgs and an inflaton in quantum field theory. In particular, the (often omitted) trilinear coupling is motivated by the need for reheating the Universe after inflation, whereby the inflaton decays into the Standard Model (SM) particles. Such a coupling necessarily leads to the Higgs-inflaton mixing, which could stabilize the electroweak vacuum by increasing the Higgs self-coupling. We find that the inflationary constraints on the trilinear coupling are weak such that the Higgs-inflaton mixing up to ord…

research product

Early Universe Higgs dynamics in the presence of the Higgs-inflaton and non-minimal Higgs-gravity couplings

Apparent metastability of the electroweak vacuum poses a number of cosmological questions. These concern evolution of the Higgs field to the current vacuum, and its stability during and after inflation. Higgs-inflaton and non-minimal Higgs-gravity interactions can make a crucial impact on these considerations potentially solving the problems. In this work, we allow for these couplings to be present simultaneously and study their interplay. We find that different combinations of the Higgs-inflaton and non-minimal Higgs-gravity couplings induce effective Higgs mass during and after inflation. This crucially affects the Higgs stability considerations during preheating. In particular, a wide ra…

research product