0000000000645005
AUTHOR
Elliot Golias
On Anomaly-Free Dark Matter Models
We investigate the predictions of anomaly-free dark matter models for direct and indirect detection experiments. We focus on gauge theories where the existence of a fermionic dark matter candidate is predicted by anomaly cancellation, its mass is defined by the new symmetry breaking scale, and its stability is guaranteed by a remnant symmetry after the breaking of the gauge symmetry. We find an upper bound on the symmetry breaking scale by applying the relic density and perturbative constraints. The anomaly-free property of the theories allows us to perform a full study of the gamma lines from dark matter annihilation. We investigate the correlation between predictions for final-state radia…
Leptophobic dark matter and the baryon number violation scale
We discuss the possible connection between the scale for baryon number violation and the cosmological bound on the dark matter relic density. A simple gauge theory for baryon number which predicts the existence of a leptophobic cold dark matter particle candidate is investigated. In this context, the dark matter candidate is a Dirac fermion with mass defined by the new symmetry breaking scale. Using the cosmological bounds on the dark matter relic density we find the upper bound on the symmetry breaking scale around 200 TeV. The properties of the leptophobic dark matter candidate are investigated in great detail and we show the prospects to test this theory at current and future experiments…