0000000000646040

AUTHOR

Christophe Pagnout

showing 1 related works from this author

Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark.

2015

16 pages; International audience; Large-scale production and incorporation of titanium dioxide nanoparticles (NP-TiO2 ) in consumer products leads to their potential release into the environment and raises the question of their toxicity. The bactericidal mechanism of NP-TiO2 under UV light is known to involve oxidative stress due to the generation of reactive oxygen species. In the dark, several studies revealed that NP-TiO2 can exert toxicological effects. However, the mode of action of these nanoparticles is still controversial. In the present study, we used a combination of fluorescent probes to show that NP-TiO2 causes Escherichia coli membrane depolarization and loss of integrity, lead…

Osmotic stressOsmotic shock[ SDV.TOX.ECO ] Life Sciences [q-bio]/Toxicology/Ecotoxicology010501 environmental sciencesBiology[ SDV.MP.BAC ] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriologymedicine.disease_cause01 natural sciencesBiochemistryMicrobiologyPermeability03 medical and health sciencesAdenosine TriphosphateOsmotic PressuremedicineExtracellularEscherichia coliMagnesiumMode of actionTranscriptomicsMolecular Biology030304 developmental biology0105 earth and related environmental scienceschemistry.chemical_classificationTitanium0303 health sciencesReactive oxygen speciesMicrobial ViabilityToxicityEscherichia coli ProteinsSodiumDepolarizationTitanium dioxide nanoparticlesMetabolism[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyBiochemistrychemistryBiophysicsPotassiumNanoparticles[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/EcotoxicologyTranscriptomeOxidative stressIntracellular
researchProduct