0000000000646385

AUTHOR

Joe Harris

showing 4 related works from this author

Single nanogranules preserve intracrystalline amorphicity in biominerals.

2015

We revisit the ultrastructural features of different calcareous biominerals and identify remarkable similarities: taxonomically very distant species show a common nanogranular structure, even if different extracellular secretion patterns are employed or calcium carbonate polymorphs formed. By these analyses, we elucidate the locus of the small fraction of intracrystalline organic matrix revealing its intergranular character and localize the intracrystalline amorphous calcium carbonate moiety commonly found in mesocrystalline biominerals and provide a first explanation for the pathway by which it is preserved.

0301 basic medicineMaterials scienceMechanical EngineeringMineralogy02 engineering and technology[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterials021001 nanoscience & nanotechnologyAmorphous calcium carbonate[SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials03 medical and health scienceschemistry.chemical_compound030104 developmental biologyCalcium carbonatechemistryMechanics of MaterialsBiophysicsGeneral Materials ScienceOrganic matrix0210 nano-technologyMesocrystalCalcareousComputingMilieux_MISCELLANEOUSBiomineralization
researchProduct

Nonclassical crystallization in vivo et in vitro (I): Process-structure-property relationships of nanogranular biominerals.

2016

A distinct nanogranular fine structure is shared by a wealth of biominerals from several species, classes and taxa. This nanoscopic organization affects the properties and behavior of the biogenic ceramic material and confers on them attributes that are essential to their function. We present a set of structure-relationship properties that are rooted in the nanogranular organization and we propose that they rest on a common pathway of formation, a colloid-driven and hence nonclassical mode of crystallization. With this common modus operandi, we reveal the most fundamental and wide spread process-structure-property relationship in biominerals. With the recent increase in our understanding of…

MineralsMaterials scienceStructure propertyNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionCalcification PhysiologicStructural BiologylawScientific methodAnimalsNanoparticlesColloidsCrystallization0210 nano-technologyCrystallizationNanoscopic scaleBiomineralizationJournal of structural biology
researchProduct

Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: A case study on the shell of the bivalve Glycyme…

2016

11 pages; International audience; The structural organization of the palliostracum—the dominant part of the shell which is formed by the mantle cells—of Glycymeris glycymeris (Linné 1758) is comprised of five hierarchical levels with pronounced structural commonalities and deviations from other crossed-lamellar shells. The hierarchical level known as second order lamellae, present within other crossed-lamellar shells, is absent highlighting a short-coming of the currently used nomenclature. On the mesoscale, secondary microtubules penetrate the palliostracum and serve as crack arrestors. Moreover, the growth lamellae follow bent trajectories possibly impacting crack propagation, crack defle…

0301 basic medicineGlycymerisStructural organizationMaterials sciencebiologyMechanical Engineeringcrystal growthtoughnessFracture mechanicsGeometry02 engineering and technology[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterials021001 nanoscience & nanotechnologyCondensed Matter Physicsbiology.organism_classification03 medical and health sciencesCrystallography030104 developmental biologybiomimetic (assembly)Mechanics of MaterialsHierarchical organizationGeneral Materials ScienceLamellar structure0210 nano-technologyBiomineralizationJournal of Materials Research
researchProduct

Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting

2015

Amorphous calcium carbonate films synthesized by the polymer-induced liquid-precursor (PILP) process convert into crystallographically complex calcite spherulites. Tuning the experimental parameters allows for the generation of crystal lattice tilting similar to that found in calcareous biominerals. This contribution evidences the role of spherulitic growth mechanisms in pseudomorphic transformations of calcium carbonate.

CalciteMaterials scienceTechnische FakultätMineralogy02 engineering and technologyGeneral ChemistryCrystal structure-010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesTransformation (music)Amorphous calcium carbonate0104 chemical scienceschemistry.chemical_compoundCalcium carbonatechemistryChemical engineeringGeneral Materials Science0210 nano-technologyCalcareousddc:600
researchProduct