0000000000646613

AUTHOR

Hardev Pandha

showing 1 related works from this author

The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway.

2013

Cutaneous melanoma is the fastest increasing cancer worldwide. Although several molecular abnormalities have been associated with melanoma progression, the underlying mechanisms are still largely unknown and few targeted therapies are under evaluation. Here we show that the HOXB7/PBX2 dimer acts as a positive transcriptional regulator of the oncogenic microRNA-221 and -222. In addition, demonstrating c-FOS as a direct target of miR-221&222, we identify a HOXB7/PBX2→miR-221&222 →c-FOS regulatory link, whereby the abrogation of functional HOXB7/PBX2 dimers leads to reduced miR-221&222 transcription and elevated c-FOS expression with consequent cell death. Taking advantage of the treatment wit…

Programmed cell deathCancer ResearchSkin NeoplasmsTranscription GeneticApoptosisSmall Interferingc-FosPolymerase Chain ReactionCell LineGeneticCell Line TumorProto-Oncogene ProteinsHOXB7/PBX2 complexmicroRNATranscriptional regulationmedicinemelanomaHumansPBXRNA Small InterferingDNA PrimersHomeodomain Proteinsc-FOS pathwayTumorbiologymicroRNABase SequenceMelanomaHOXB7; HXR9 peptide; melanoma; microRNA; PBX; Apoptosis; Base Sequence; Cell Line Tumor; DNA Primers; Dimerization; Homeodomain Proteins; Humans; Melanoma; MicroRNAs; Polymerase Chain Reaction; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-fos; RNA Small Interfering; Skin Neoplasms; Transcription Genetic; Cancer Research; Oncologymedicine.diseaseMicroRNAsHXR9 peptideOncologyApoptosisCell cultureCutaneous melanomaHOXB7/PBX2 complex ;melanoma ;c-FOS pathwayCancer researchbiology.proteinHOXB7RNATranscriptionDimerizationProto-Oncogene Proteins c-fosCancer Cell Biology
researchProduct