0000000000648699

AUTHOR

S. Lüdtke

Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations.

Classical silica technology has reached its limit with respect to an ultimate minimum particle size of about 2 microm in diameter. Here, a novel process is presented which allows one to synthesize porous silica beads and control their particle diameter in situ, within the range of 0.2-2.0 microm. As a result, no sizing is required and losses of silica are avoided. Furthermore, the process enables one to control in situ the pore structural parameters and the surface chemistry of the silica beads. Even though surface funtionalized silicas made according to this process can principally be applied in fast HPLC the column pressure drop will be high even for short columns. In addition, the column…

research product

Novel general expressions that describe the behavior of the height equivalent of a theoretical plate in chromatographic systems involving electrically-driven and pressure-driven flows

Novel general expressions are constructed and presented that describe the behavior of the height equivalent of a theoretical plate (plate height), H, as a function of the linear velocity, Vx, along the axis, x, of the column and the kinetic parameters that characterize the mass transfer and adsorption mechanisms in chromatographic columns. Open tube capillaries as well as columns packed with either non-porous or porous particles are studied. The porous particles could have unimodal or bimodal pore-size distributions and intraparticle convective fluid flow and pore diffusion are considered. The expressions for the plate height, H, presented in this work could be applicable to high-performanc…

research product