New horizons for fundamental physics with LISA
K. G. Arun et al.
No chiral light bending by clumps of axion-like particles
We study the propagation of light in the presence of a parity-violating coupling between photons and axion-like particles (ALPs). Naively, this interaction could lead to a split of light rays into two separate beams of different polarization chirality and with different refraction angles. However, by using the eikonal method we explicitly show that this is not the case and that ALP clumps do not produce any spatial birefringence. This happens due to non-trivial variations of the photon's frequency and wavevector, which absorb time-derivatives and gradients of the ALP field. We argue that these variations represent a new way to probe the ALP-photon couping with precision frequency measuremen…
Constraints on millicharged dark matter and axionlike particles from timing of radio waves
We derive novel constraints on millicharged dark matter and ultralight axion-like particles using pulsar timing and fast radio burst observations. Millicharged dark matter affects the dispersion measure of the time of arrival of radio pulses in a way analogous to free electrons. Light pseudo-scalar dark matter, on the other hand, causes the polarization angle of radio signals to oscillate. We show that current and future data can set strong constraints in both cases. For dark matter particles of charge $\epsilon e$, these constraints are ${\epsilon}/{m_{\rm milli}} \lesssim 10^{-8}{\rm eV}^{-1}$, for masses $m_{\rm milli}\gtrsim 10^{-6}\,$eV. For axion-like particles, the analysis of signal…