0000000000652846
AUTHOR
H. Awada
Assessing actual evapotranspiration in irrigation districts using Landsat TM images and SEBAL model: Potential uses for irrigation monitoring
Satellite imagery allows the observation of large land stretches and the acquisition of worthwhile information that can be used efficaciously in agro-hydrologic systems. On the other hand, remotely sensed data coupled with energy balance models represent reliable tools to estimate actual evapotranspiration (ET). Objective of the research was to propose a methodology to estimate ET by using Landsat TM images and surface energy balance, thus allowing the monitoring of current irrigation practices and/or possible vegetation stress. The proposed methodology was applied in an irrigation district managed by “Consorzio di Bonifica Agrigento 3”, Castelvetrano, Sicily (Italy), in which water is dist…
Assessing opportunities for water savings in large-scale pressurized irrigation systems using actual evapotranspiration retrieved by surface energy balance and remotely sensed data
Remote sensing allows the observation of large land stretches and the acquisition of worthwhile information that can be used efficaciously in agro-hydrologic systems. Satellite imagery associated to computational models provide a reliable resource in estimating evapotranspiration (ET) fluxes based on surface energy balance. On irrigated crops, quantifying the spatial distribution of actual ET enables a broad range of applications such as irrigation management, monitoring water distribution, assessing crop water status and irrigation system performance. The general objective of the research was to propose a methodology to estimate ET by using Landsat Thematic Mapper (TM) images and surface e…
A novel method to simulate the 3D chlorophyll distribution in marine oligotrophic waters
Abstract A 3D advection-diffusion-reaction model is proposed to investigate the abundance of phytoplankton in a difficult-to-access ecosystem such as the Gulf of Sirte (southern Mediterranean Sea) characterized by oligotrophic waters. The model exploits experimentally measured environmental variables to reproduce the dynamics of four populations that dominate phytoplankton community in the studied area: Synechococcus, Prochlorococcus HL, Prochlorococcus LL and picoeukaryotes. The theoretical results obtained for phytoplankton abundances are converted into chl-a and Dvchl-a concentrations, and the simulated vertical chlorophyll profiles are compared to the corresponding experimentally acquir…