0000000000654128

AUTHOR

A. Kaboth

showing 2 related works from this author

Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN

2019

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (−1.0−1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a …

Semileptonic decayPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsFOS: Physical sciencesGeneral Physics and AstronomyKinematicsElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]KATRIN01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)mass: scaleneutrino: mass: measured0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530S066MAESensitivity (control systems)Limit (mathematics)structure[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicstritiumPhysicsformationS066M2EInstrumentation and Detectors (physics.ins-det)semileptonic decaysensitivityddc:kinematicsElementary Particles and Fieldselectron: energy spectrumHigh Energy Physics::ExperimentPräzisionsexperimente - Abteilung BlaumNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsKATRINexperimental results
researchProduct

Testing CCQE and 2p2h models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERvA experiments

2016

The MiniBooNE large axial mass anomaly has prompted a great deal of theoretical work on sophisticated Charged Current Quasi-Elastic (CCQE) neutrino interaction models in recent years. As the dominant interaction mode at T2K energies, and the signal process in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2K's Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2K's primary neutrino interaction event generator. In this paper, we give an overview of the models implemented, and present fits to published muon neutrino and muon antineutrino CCQE cross section mea…

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Physics::Instrumentation and DetectorsFOS: Physical sciencesHigh Energy Physics::ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentHigh Energy Physics - Experiment
researchProduct