0000000000654575

AUTHOR

Nina B. Gold

showing 2 related works from this author

Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates.

2020

The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cyt…

0301 basic medicineRegulation of gene expressionNeurogenesisRNA-Binding ProteinsTranslation (biology)RNA-binding proteinCell DifferentiationNerve Tissue ProteinsBiologyCell fate determinationGeneral Biochemistry Genetics and Molecular BiologyNeural stem cellCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineNeural Stem CellsNucleocytoplasmic TransportCELF ProteinsHumansProgenitor cell030217 neurology & neurosurgeryCell reports
researchProduct

Am J Hum Genet

2019

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutat…

0301 basic medicineMaleMicrocephaly[SDV]Life Sciences [q-bio]Developmental DisabilitiesAucunBiology030226 pharmacology & pharmacyTransactivation03 medical and health sciencesMiceNeurodevelopmental disorder0302 clinical medicineReportIntellectual DisabilityCoactivatormedicineGeneticsAnimalsHumansPoint MutationAlleleChildExomeGenetics (clinical)Alleles030304 developmental biologyGenetics0303 health sciencesPoint mutationCorrectionInfantSyndromemedicine.diseaseAndrogen receptor030104 developmental biologyChild PreschoolFemale030217 neurology & neurosurgeryTranscription Factors
researchProduct