0000000000654862
AUTHOR
Carmen Aloy
Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars
The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars' outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of \emph{Fermi}'s second LAT AGN catalog, a comparison with observations in the $\gamma$-ray band was performed, in order to identify the effects of the magnetic field.
Numerical simulations of dynamics and emission from relativistic astrophysical jets
Broadband emission from relativistic outflows (jets) of active galactic nuclei (AGN) and gamma-ray bursts (GRBs) contains valuable information about the nature of the jet itself, and about the central engine which launches it. Using special relativistic hydrodynamics and magnetohydronamics simulations we study the dynamics of the jet and its interaction with the surrounding medium. The observational signature of the simulated jets is computed using a radiative transfer code developed specifically for the purpose of computing multi-wavelength, time-dependent, non-thermal emission from astrophysical plasmas. We present results of a series of long-term projects devoted to understanding the dyn…