0000000000656574

AUTHOR

I. Faragó

showing 1 related works from this author

Qualitative analysis of matrix splitting methods

2001

Abstract Qualitative properties of matrix splitting methods for linear systems with tridiagonal and block tridiagonal Stieltjes-Toeplitz matrices are studied. Two particular splittings, the so-called symmetric tridiagonal splittings and the bidiagonal splittings, are considered, and conditions for qualitative properties like nonnegativity and shape preservation are shown for them. Special attention is paid to their close relation to the well-known splitting techniques like regular and weak regular splitting methods. Extensions to block tridiagonal matrices are given, and their relation to algebraic representations of domain decomposition methods is discussed. The paper is concluded with ill…

Pure mathematicsSOR methodTridiagonal matrixLinear systemBlock (permutation group theory)Tridiagonal matrix algorithmDomain decomposition methodsComputer Science::Numerical AnalysisStieltjes-Toeplitz matricesMathematics::Numerical AnalysisAlgebraComputational MathematicsQualitative analysisComputational Theory and MathematicsMatrix splittingModeling and SimulationModelling and SimulationMatrix splitting methodsRegular and weak regular splittingsDomain decompositionAlgebraic numberQualitative analysisMathematicsComputers & Mathematics with Applications
researchProduct