0000000000658576

AUTHOR

Martin Chevarin

showing 10 related works from this author

Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability.

2020

PurposeMarfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan–Fryns syndrome explain no more than 20% of subjects.MethodsTo further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic.ResultsWe identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, …

ProbandMale[SDV]Life Sciences [q-bio]intellectual deficiencyMESH: NFI Transcription Factorschromatin remodelingMarfan SyndromeCraniofacial AbnormalitiesMESH: ChildIntellectual disabilityMESH: Craniofacial AbnormalitiesMESH: Mental Retardation X-LinkedExomeChildde novo variantsGenetics (clinical)Exome sequencingGeneticsMESH: ExomeMESH: Middle AgedbiologyMESH: Genetic Predisposition to DiseaseMiddle AgedNFIXMESH: Young AdultFemaleAdultMESH: MutationAdolescentChromatin remodelingMESH: Intellectual DisabilityMESH: Marfan SyndromeEHMT1Young AdultMESH: Whole Exome SequencingIntellectual DisabilityExome SequencingGeneticsmedicineHumansGenetic Predisposition to Diseasemarfanoid habitusGeneMESH: Neurodevelopmental DisordersMESH: AdolescentMESH: HumansGenetic heterogeneityMESH: Chromatin Assembly and DisassemblyMESH: Histone-Lysine N-MethyltransferaseMESH: AdultHistone-Lysine N-Methyltransferasemedicine.diseaseChromatin Assembly and DisassemblyMESH: MaleNFI Transcription FactorsNeurodevelopmental DisordersMutationbiology.proteinMental Retardation X-LinkedMESH: FemaleJournal of medical genetics
researchProduct

De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features

2020

IntroductionPigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko’s lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions.Materials and methodsSubsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or with…

0301 basic medicineMESH: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyIntellectual disabilityTFE3Biology[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human geneticsMESH: Intellectual Disability03 medical and health sciencesExon0302 clinical medicineMESH: Whole Exome SequencingMESH: ChildIntellectual disabilityGeneticsmedicineMissense mutationGeneGenetics (clinical)Exome sequencingPigmentary mosaicismMESH: Pathology MolecularGeneticsMESH: AdolescentMESH: HumansAlternative splicingLysosomal metabolismMESH: Child Preschool[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMESH: Adultmedicine.diseasePhenotypeMESH: InfantMESH: MaleTFE3Storage disorder030104 developmental biologyMESH: Genes X-Linked[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMESH: Young AdultMESH: EpilepsyMESH: MosaicismMESH: Pigmentation DisordersMESH: Female030217 neurology & neurosurgery
researchProduct

Cerebriform sebaceous nevus: a subtype of organoid nevus due to specific postzygotic FGFR2 mutations.

2021

Background Postzygotic mutations in FGFR2 have been identified in mosaic forms of acne, keratinocytic epidermal nevi, nevoid acanthosis nigricans / rounded and velvety epidermal nevus and in two fetuses with papillomatous pedunculated sebaceous nevus (PPSN). Objectives To determine the clinical and genetic characteristics of children with cerebriform, papillomatous, and pedunculated variants of sebaceous nevi. Methods Infants diagnosed with sebaceous nevi characterized by a cerebriform, papillomatous, and/or pedunculated morphology over a 10-year period (2010 - 2019) at three pediatric dermatology centers in Switzerland and France were included in this case series. Clinical and histological…

medicine.medical_specialtySkin NeoplasmsCutis gyrataDermatologyEpidermal nevusmedicine.disease_causeGermline030207 dermatology & venereal diseases03 medical and health sciences0302 clinical medicinemedicineNevusHumansPediatric dermatologyReceptor Fibroblast Growth Factor Type 2skin and connective tissue diseasesAcanthosis nigricansNevusMutationintegumentary systembusiness.industryOrganoid Nevusmedicine.diseaseDermatologyOrganoidsInfectious Diseases030220 oncology & carcinogenesisMutationbusinessJournal of the European Academy of Dermatology and Venereology : JEADVReferences
researchProduct

Variant recurrence in neurodevelopmental disorders: the use of publicly available genomic data identifies clinically relevant pathogenic missense var…

2019

Next-generation sequencing has revealed the major impact of de novo variants (DNVs) in developmental disorders (DD) such as intellectual disability, autism, and epilepsy. However, a substantial fraction of these predicted pathogenic DNVs remains challenging to distinguish from background DNVs, notably the missense variants acting via nonhaploinsufficient mechanisms on specific amino acid residues. We hypothesized that the detection of the same missense variation in at least two unrelated individuals presenting with a similar phenotype could be a powerful approach to reveal novel pathogenic variants. We looked for variations independently present in both our database of >1200 solo exomes and…

Male0301 basic medicineCandidate geneDevelopmental DisabilitiesMutation Missense030105 genetics & heredityBiology03 medical and health sciencesNeurodevelopmental disorderIntellectual DisabilityDatabases GeneticIntellectual disabilitymedicineHumansMissense mutationExomeGenetic Predisposition to DiseaseGenetic TestingAutistic DisorderGeneGenetics (clinical)Exome sequencingGeneticsComputational BiologyHigh-Throughput Nucleotide SequencingGenomicsSequence Analysis DNAmedicine.diseasePhenotype030104 developmental biologyNeurodevelopmental DisordersAutismFemaleTranscription FactorsGenetics in Medicine
researchProduct

Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of…

2017

International audience; PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics—50% of patients still have no molecular diagnosis after a long and stressful diagnostic “odyssey.” Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for …

0301 basic medicinemedicine.medical_specialtyPediatricsCongenital anomaliesIntellectual disabilityTranslational researchClinical WES dataCongenital Abnormalities03 medical and health sciencesRare DiseasesIntellectual disabilityDatabases GeneticExome SequencingmedicineHumansExomeGenetic Testing[ SDV.GEN.GH ] Life Sciences [q-bio]/Genetics/Human geneticsExomeGenetics (clinical)Exome sequencingGenetic testingRetrospective Studiesmedicine.diagnostic_testbusiness.industryHigh-Throughput Nucleotide SequencingRetrospective cohort studySequence Analysis DNAmedicine.diseaseAdditional research3. Good health030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsWhole-exome sequencingPhysical therapyRaw databusiness
researchProduct

Haploinsufficiency of ARFGEF1 is associated with developmental delay, intellectual disability, and epilepsy with variable expressivity

2021

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized.METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing.RESULTS: We identified 13 individuals with heterozygous…

0301 basic medicineGeneticsCandidate geneHeterozygoteEpilepsyADP ribosylation factorIn silicoHeterozygote advantageHaploinsufficiency030105 genetics & heredityBiologymedicine.disease03 medical and health sciencesEpilepsy030104 developmental biologyIntellectual DisabilitymedicineGuanine Nucleotide Exchange FactorsHumansGuanine nucleotide exchange factorHaploinsufficiencyGenetics (clinical)MinigeneGenetics in Medicine
researchProduct

Interest of exome sequencing trio-like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases.

2021

Abstract Background Exome sequencing (ES) has become the most powerful and cost‐effective molecular tool for deciphering rare diseases with a diagnostic yield approaching 30%–40% in solo‐ES and 50% in trio‐ES. We applied an innovative parental DNA pooling method to reduce the parental sequencing cost while maintaining the diagnostic yield of trio‐ES. Methods We pooled six (Agilent‐CRE‐v2–100X) or five parental DNA (TWIST‐HCE–70X) aiming to detect allelic balance around 8–10% for heterozygous status. The strategies were applied as second‐tier (74 individuals after negative solo‐ES) and first‐tier approaches (324 individuals without previous ES). Results The allelic balance of parental‐pool v…

Genetic MarkersCost effectivenessTranslational researchBiologyQH426-470Sensitivity and SpecificityWorkflowTranslational Research Biomedicalchemistry.chemical_compoundsymbols.namesakeExome SequencingFalse positive paradoxGeneticsHumansDna poolingGenetic Predisposition to DiseaseGenetic TestingAlleleMolecular BiologyGenetics (clinical)Exome sequencingtrio‐like strategy; parental‐pool strategyGeneticsSanger sequencingcost effectivenessReproducibility of Resultsrare diseasesSequence Analysis DNAOriginal ArticleschemistryResearch DesignsymbolsOriginal ArticleDNAGenome-Wide Association StudyMolecular geneticsgenomic medicine
researchProduct

Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses

2017

IF 2.137; International audience; BACKGROUND AND OBJECTIVE:Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to impr…

0301 basic medicineAdultMaleExome sequencingmedicine.medical_specialtyTime FactorsAdolescentGenetic counselingBioinformaticsTurnaround timeSensitivity and SpecificityUndiagnosed genetic conditions03 medical and health sciencesGeneticsmedicineHumansExomeGenetic TestingMedical diagnosisIntensive care medicineChildExomeGenetics (clinical)Exome sequencingGenetic testingWhole genome sequencing[SDV.GEN]Life Sciences [q-bio]/Geneticsmedicine.diagnostic_testbusiness.industryInfant NewbornInfantGeneral MedicineSequence Analysis DNADiagnostic turnaround time3. Good healthClinical trial030104 developmental biologyEarly DiagnosisChild PreschoolFemalebusiness[ SDV.GEN ] Life Sciences [q-bio]/Genetics
researchProduct

Cardiomyopathy due to PRDM16 mutation: First description of a fetal presentation, with possible modifier genes

2020

PRDM16 (positive regulatory domain 16) is localized in the critical region for cardiomyopathy in patients with deletions of chromosome 1p36, as defined by Gajecka et al., American Journal of Medical Genetics, 2010, 152A, 3074-3083, and encodes a zinc finger transcription factor. We present the first fetal case of left ventricular non-compaction (LVNC) with a PRDM16 variant. The third-trimester obstetric ultrasound revealed a hydropic fetus with hydramnios and expanded hypokinetic heart. After termination of pregnancy, foetopathology showed a eutrophic fetus with isolated cardiomegaly. Endocardial fibroelastosis was associated with non-compaction of the myocardium of the left ventricle. Exom…

AdultHeart Defects CongenitalMalemedicine.medical_specialtyCardiomyopathyBiologyLabor PresentationGenetic HeterogeneityPregnancyExome SequencingGeneticsmedicineHumansMissense mutationGenetic Predisposition to DiseaseGenetics (clinical)Exome sequencingGeneticsFetusGenes ModifierGenetic heterogeneityInfant NewbornEndocardial fibroelastosisMiddle AgedFetal Presentationmedicine.diseasePedigreeDNA-Binding ProteinsMutationMedical geneticsFemaleCardiomyopathiesTranscription FactorsAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics
researchProduct

Recherche des bases moléculaires des phénotypes extrêmes de cancer par séquençage d'exome

2019

Certains cancers peuvent être qualifiés de « phénotypes extrêmes ». Il s’agit soit de formes sporadiques particulièrement précoces, soit de formes familiales avec un excès de cancers dans une même branche parentale. La présence de plusieurs tumeurs primitives, de tumeurs bilatérales ou l'association de plusieurs cancers rares chez un même patient ou au sein d’une même famille, peut également entrer dans cette catégorie. Devant ces présentations, une prédisposition génétique est très fortement suspectée.L'analyse de panels de gènes connus pour être impliqués dans les formes mendéliennes de cancer est la pratique courante pour identifier la mutation responsable d'une prédisposition au cancer.…

ATR[SDV.CAN] Life Sciences [q-bio]/Cancer[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsPrédispositionExome[SDV.CAN]Life Sciences [q-bio]/Cancer[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human geneticsPhénotype extrêmeCancer
researchProduct