Mass singularities in light quark correlators: the strange quark case
The correlators of light-quark currents contain mass-singularities of the form log(m^2/Q^2). It has been known for quite some time that these mass- logarithms can be absorbed into the vacuum expectation values of other operators of appropriate dimension, provided that schemes without normal- ordering are used. We discuss in detail this procedure for the case of the mass logarithms m^4 log(m^2/Q^2), including also the mixing with the other dimension-4 operators to two-loop order. As an application we present an improved QCD sum rule determination of the strange-quark mass. We obtain m_s(1 GeV)=171 \pm 15 MeV.