0000000000667828

AUTHOR

F. M. Gambetta

showing 2 related works from this author

Universal transport dynamics in a quenched tunnel-coupled Luttinger liquid

2016

The transport dynamics of a quenched Luttinger liquid tunnel-coupled to a fermionic reservoir is investigated. In the transient dynamics, we show that for a sudden quench of the electron interaction universal power-law decay in time of the tunneling current occurs, ascribed to the presence of entangled compound excitations created by the quench. In sharp contrast to the usual non universal power-law behavior of a zero-temperature non-quenched Luttinger liquid, the steady state tunneling current is ohmic and can be explained in terms of an effective quench-activated heating of the system. Our study unveils an unconventional dynamics for a quenched Luttinger liquid that could be identified in…

High Energy Physics::LatticeElectron interactionFOS: Physical sciences01 natural sciences010305 fluids & plasmasCondensed Matter Physics; Electronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsLuttinger liquid0103 physical sciencesElectronicOptical and Magnetic MaterialsTunneling current010306 general physicsOhmic contactElectronic Optical and Magnetic Materials; Condensed Matter PhysicsPhysicsCondensed Matter::Quantum GasesCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Transport dynamicsCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum Gases (cond-mat.quant-gas)Condensed Matter::Strongly Correlated ElectronsTransient (oscillation)Condensed Matter - Quantum GasesFermi Gamma-ray Space Telescope
researchProduct

Engineering NonBinary Rydberg Interactions via Phonons in an Optical Lattice

2019

Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body interactions which are controllable through the strength of the local confinement. This approach even permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on system ground state on a square lattice. Focus…

PhysicsOptical latticeAtomic Physics (physics.atom-ph)PhononFOS: Physical sciencesGeneral Physics and AstronomyQuantum simulator01 natural sciencesMolecular physicsSquare latticePhysics - Atomic Physics3. Good healthsymbols.namesakeOptical tweezersQuantum Gases (cond-mat.quant-gas)0103 physical sciencesRydberg atomRydberg formulasymbolsPhysics::Atomic PhysicsCondensed Matter - Quantum Gases010306 general physicsGround statePhysical Review Letters
researchProduct