0000000000668865
AUTHOR
Y. V. Stadnik
Improved limits on axion-like-particle-mediated P,T-violating interactions between electrons and nucleons from electric dipole moments of atoms and molecules
In the presence of P,T-violating interactions, the exchange of axion-like particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarisation (RPA) corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including $^{133}$Cs, $^{205}$Tl, $^{129}$Xe, $^{199}$Hg, $^{171}$Yb$^{19}$F, $^{180}$Hf$^{19}$F$^+$ and $^{232}$Th$^{16}$O, we const…
Reply to comment on "Searching for Topological Defect Dark Matter via Nongravitational Signatures"
In the comment of Avelino, Sousa and Lobo [arXiv:1506.06028], it is argued, by comparing the kinetic energy of a topological defect with the overall energy of a pulsar, that the origin of the pulsar glitch phenomenon due to the passage of networks of topological defects through pulsars is faced with serious difficulties. Here, we point out that topological defects may trigger pulsar glitches within traditional scenarios, such as vortex unpinning. If the energy transfer from a topological defect exceeds the activation energy for a single pinned vortex, this may lead to an avalanche of unpinning of vortices and consequently a pulsar glitch, and therefore the source of angular momentum and ene…
Manifestations of dark matter and variations of fundamental constants in atoms and astrophysical phenomena
We present an overview of recent developments in the detection of light bosonic dark matter, including axion, pseudoscalar axion-like and scalar dark matter, which form either a coherently oscillating classical field or topological defects (solitons). We emphasise new high-precision laboratory and astrophysical measurements, in which the sought effects are linear in the underlying interaction strength between dark matter and ordinary matter, in contrast to traditional detection schemes for dark matter, where the effects are quadratic or higher order in the underlying interaction parameters and are extremely small. New terrestrial experiments include measurements with atomic clocks, spectros…