0000000000668942
AUTHOR
Diana Bellows
Energy transfers in monomers, dimers, and trimers of zinc(II) and palladium(II) porphyrins bridged by rigid Pt-containing conjugated organometallic spacers
A series of linear monomers (spacer-M(P)), dimers (M(P)-spacer-M'(P)), and trimers (M(P)-spacer-M'(P)-spacer-M(P)) of spacer/metalloporphyrin systems (M' = Zn, M = Zn, Pd, P = porphyrin, and spacer = trans-C(6)H(4)C[triple bond]CPtL(2)C[triple bond]CC(6)H(4)- (L = PEt(3))) including mixed metalloporphyrin compounds, were synthesized and characterized. The S(1) and T(1) energy transfers Pd(P)*--Zn(P) occur with rates of approximately 2 x 10(9) s(-1), S(1), and 0.15 x 10(3) (slow component) and 4.3 x 10(3) s(-1) (fast component), T(1). On the basis of a literature comparison with a related dyad, the Pt atom in the conjugated chain slows down the transfers. The excitation in the absorption ban…
Through-bond versus through-space T1 energy transfers in organometallic compound-metalloporphyrin pigments
The preparation and characterization of two d9−d9 M2-bonded Pt2(dppm)2(C≡CC6H4-M(P))2 complexes (where M = Zn or Pd, and P = diethylhexamethylporphyrin) were achieved. The central [Pt2(dppm)2(C≡CC6H4)2] organometallic unit appears to be an independent chromophore and is suspected to be luminescent at 77 K (in 2MeTHF) in the porphyrin-containing complexes, as this is the case for the unfunctionalized Pt2(dppm)2(C≡CPh)2 parent compound. However, when this spacer is connected (by a single C−C bond) to either M(P) (M = Zn, Pd), even in the absence of conjugation (as the computed dihedral angle between the C6H4 and porphyrin planes is ∼84.5°), total quenching of the luminescence of the [Pt2(dppm…