0000000000671084
AUTHOR
Annu Rusanen
Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst
Selective and efficient dehydration of glucose to 5-hydroxymethylfurfural (HMF) has been widely explored research problem recently, especially from the perspective of more sustainable heterogeneous catalysts. In this study, activated carbon was first produced from a lignocellulosic waste material, birch sawdust. Novel heterogeneous catalysts were then prepared from activated carbon by adding Lewis or Brønsted acid sites on the carbon surface. Prepared catalysts were used to convert glucose to HMF in biphasic water:THF system at 160 °C. The highest HMF yield and selectivity, 51% and 78%, respectively, were obtained in 8 h with a catalytic mixture containing both Lewis and Brønsted acid sites…
Conversion of Xylose to Furfural over Lignin-Based Activated Carbon-Supported Iron Catalysts
In this study, conversion of xylose to furfural was studied using lignin-based activated carbon-supported iron catalysts. First, three activated carbon supports were prepared from hydrolysis lignin with different activation methods. The supports were modified with different metal precursors and metal concentrations into five iron catalysts. The prepared catalysts were studied in furfural production from xylose using different reaction temperatures and times. The best results were achieved with a 4 wt% iron-containing catalyst, 5Fe-ACs, which produced a 57% furfural yield, 92% xylose conversion and 65% reaction selectivity at 170 °
Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst
Abstract Selective and efficient dehydration of glucose to 5-hydroxymethylfurfural (HMF) has been widely explored research problem recently, especially from the perspective of more sustainable heterogeneous catalysts. In this study, activated carbon was first produced from a lignocellulosic waste material, birch sawdust. Novel heterogeneous catalysts were then prepared from activated carbon by adding Lewis or Bronsted acid sites on the carbon surface. Prepared catalysts were used to convert glucose to HMF in biphasic water:THF system at 160 °C. The highest HMF yield and selectivity, 51% and 78%, respectively, were obtained in 8 h with a catalytic mixture containing both Lewis and Bronsted a…