0000000000671604

AUTHOR

Cristiana Sebu

Conductivity imaging with interior potential measurements

In this article, we present two reconstruction methods intended to be used for conductivity imaging with data obtained from a planar electrical impedance tomography device for breast cancer detection. The inverse problem to solve is different from the classical inverse conductivity problem. We reconstruct the electrical conductivity of a two-dimensional domain from boundary measurements of currents and interior measurements of the potential. One reconstruction algorithm is based on a discrete resistor model; the other one is an integral equation approach for smooth conductivity distributions.

research product

QCD condensates from tau-decay data: A functional approach

We study a functional method to extract the V − A condensate of dimension 6 from a comparison of τ -decay data with the asymptotic space-like QCD prediction. Our result is in agreement within errors with that from conventional analyses based on finite energy sum rules.

research product

Conductivity reconstructions using real data from a new planar electrical impedance tomography device

Abstract In this paper, we present results of reconstructions using real data from a new planar electrical impedance tomography device developed at the Institut fur Physik, Johannes Gutenberg Universitat, Mainz, Germany. The prototype consists of a planar sensing head of circular geometry, and it was designed mainly for breast cancer detection. There are 12 large outer electrodes arranged on a ring of radius  cm where the external currents are injected, and a set of 54 point-like high-impedance inner electrodes where the induced voltages are measured. Two direct (i.e. non-iterative) reconstruction algorithms are considered: one is based on a discrete resistor model, and the other one is an …

research product