0000000000672141

AUTHOR

Andreas Jäger

Regulation of Autophagic Signaling by Mechanical Loading and Inflammation in Human PDL Fibroblasts

Autophagy (cellular self-consumption) is a crucial adaptation mechanism during cellular stress conditions. This study aimed to examine how this important process is regulated in human periodontal ligament (PDL) fibroblasts by mechanical and inflammatory stress conditions and whether the mammalian target of rapamycin (mTOR) signaling pathway is involved. Autophagy was quantified by flow cytometry. Qualitative protein phosphorylation profiling of the mTOR pathway was carried out. Effects of mTOR regulation were assessed by quantification of important synthesis product collagen 1, cell proliferation and cell death with real-time PCR and flow cytometry. Autophagy as a response to mechanical or …

research product

CXCL5, CXCL8, and CXCL10 regulation by bacteria and mechanical forces in periodontium.

Made available in DSpace on 2021-06-25T10:46:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2021-03-01 Objective: The aim of the present study was to evaluate the expressions of CXCL5, CXCL8, and CXCL10 in periodontal cells and tissues in response to microbial signals and/or biomechanical forces. Methods: Human gingival biopsies from inflamed and healthy sites were used to examine the chemokine expressions and protein levels by real-time PCR and immunohistochemistry. The chemokines were also investigated in gingival biopsies from rats submitted to experimental periodontitis and/or tooth movement. Furthermore, chemokine levels were determined in human periodontal fibroblasts stimulated…

research product

Heat shock protein 70 dampens the inflammatory response of human PDL cells to mechanical loading in vitro

BACKGROUND AND OBJECTIVE Previously, we demonstrated an inflammatory response of human PDL (hPDL) cells to mechanical loading. The cellular reaction was dampened by heat pre-treatment suggesting a protective role for heat shock proteins (HSP) during stress-induced ischemia. Here we explored if HSP70, which has already been documented in the pressure zone of tooth movement, might be regulatorily involved in the attenuation of the inflammatory response. MATERIALS AND METHODS Fifth passage hPDL cells were mechanically loaded in the presence of the HSP70 inhibitor VER155008. Cell morphology, HSP70 expression, viability, IL-6 and IL-8 expression were determined by means of microscopy, realtime-P…

research product

Autophagy Induces Expression of IL-6 in Human Periodontal Ligament Fibroblasts Under Mechanical Load and Overload and Effects Osteoclastogenesis in vitro

Frontiers in physiology 12, 716441 (2021). doi:10.3389/fphys.2021.716441 special issue: "Alveolar Bone: a Pivotal Role in Periodontal Disease Pathobiology and Treatment, Volume I / Fani Anagnostou, Beatriz Castaneda, Frédéric Lézot and Petros Papagerakis"

research product

Regulation of Anti-Apoptotic SOD2 and BIRC3 in Periodontal Cells and Tissues.

Made available in DSpace on 2021-06-25T10:49:07Z (GMT). No. of bitstreams: 0 Previous issue date: 2021-01-02 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Deutscher Akademischer Austauschdienst Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Deutsche Forschungsgemeinschaft The aim of the study was to clarify whether orthodontic forces and periodontitis interact with respect to the anti-apoptotic molecules superoxide dismutase 2 (SOD2) and baculoviral IAP repeat-containing protein 3 (BIRC3). SOD2, BIRC3, and the apoptotic markers caspases 3 (CASP3) and 9 (CASP9) were analyzed in gingiva from periodontally healthy and periodontitis subjects by real-time PCR…

research product