0000000000672465

AUTHOR

Balazs Barany

showing 1 related works from this author

Dimension of self-affine sets for fixed translation vectors

2016

An affine iterated function system is a finite collection of affine invertible contractions and the invariant set associated to the mappings is called self-affine. In 1988, Falconer proved that, for given matrices, the Hausdorff dimension of the self-affine set is the affinity dimension for Lebesgue almost every translation vectors. Similar statement was proven by Jordan, Pollicott, and Simon in 2007 for the dimension of self-affine measures. In this article, we have an orthogonal approach. We introduce a class of self-affine systems in which, given translation vectors, we get the same results for Lebesgue almost all matrices. The proofs rely on Ledrappier-Young theory that was recently ver…

Self-affine setvektoritself-affine measurevectorsmatematiikka37C45 28A80FOS: MathematicsHausdorff dimensionDynamical Systems (math.DS)Mathematics - Dynamical Systems37C45 (primary)28A80 (secondary)matemaattiset objektit
researchProduct