0000000000674328
AUTHOR
Concetto Puglisi
PVC silver zeolite composites with antimicrobial properties
Poly(vinyl chloride) (PVC) composites containing increasing amounts (2-20%, w/w) of silver zeolite (SZ) were prepared by melt mixing and characterized by thermal, mechanical and rheological analyses. The addition of large amount of SZ did not influence the processability and the formability of the composites, if compared to neat plasticized PVC. The antibacterial activity of PVC SZ composites was tested on Escherichia coli and Staphylococcus epidermidis and resulted promising both in culture broth and on agar plate and also in sterile urine seeded with these strains, for simulation purposes. In sterile urine, composites induced a significant reduction (4-6 log units) of viability of both st…
Synthesis of AB and ABA block copolymers as compatibilizers in nylon 6/polycarbonate blends
Nylon 6 (Ny6) and Bisphenol A polycarbonate (PC) are immiscible and form biphasic blends. To improve the compatibility of Ny6 and PC several ABA and AB Ny6/PC block copolymers were synthesized, and their compatibilizing behavior on the blends were tested. Block copolymers were prepared by reacting monoamino- or diamino-terminated Ny6 homopolymers with high molecular weight PC at 130°C in anhydrous DMSO. The reaction of diamino- and monoamino-terminated Ny6 with polycarbonate produces block copolymers of the type PC-Ny6-PC (ABA) and PC-Ny6 (AB), respectively, plus a certain amount of unconverted PC degradated to lower molecular weights. To separate the block copolymer from the unconverted PC…
On the Preparation and Characterization of Polyethylene/Polyamide Blends by Melt Processing in the Presence of an Ethylene/Acrylic Acid Copolymer and of New Phosphazene Compounds
Samples of HDPE and PA6 have been melt-processed in the presence of two new phosphazene compounds, CP-2EPOX and CP-20XA together with an ethylene/acrylic acid copolymer. The blends have been prepared in an industrial twin-screw extruder by using PA6 and PE in weight ratios of 25/75 and 75/25. When used, 5 phr of EAA and 0.2 phr of CP have been added. The materials have been completely characterized from a rheological, morphological, and mechanical point of view. The results indicate that the additives used caused an increase in the rupture tensile properties, of the impact strength and viscosity especially in the PE-rich blend in the presence of CP-2EPOX. This result can be attributed both …