0000000000675787
AUTHOR
Nathan Piasco
Apprentissage de modalités auxiliaires pour la localisation basée vision
In this paper we present a new training with side modality framework to enhance image-based localization. In order to learn side modality information, we train a fully convo-lutional decoder network that transfers meaningful information from one modality to another. We validate our approach on a challenging urban dataset. Experiments show that our system is able to enhance a purely image-based system by properly learning appearance of a side modality. Compared to state-of-the-art methods, the proposed network is lighter and faster to train, while producing comparable results.
Localisation Basée Vision : de l'hétérogénéité des approches et des données
National audience; De nos jours, nous disposons d'une grande diversité de données sur les lieux qui nous entourent. Ces données peuvent être de natures très différentes : une collection d'images, un modèle 3D, un nuage de points colorisés, etc. Lorsque les GPS font défaut, ces informations peuvent être très utiles pour localiser un agent dans son environnement s'il peut lui-même acquérir des informations à partir d'un système de vision. On parle alors de Localisation Basée Vision (LBV). De par la grande hétérogénéité des données acquises et connues sur l'environnement, il existe de nombreux travaux traitant de ce problème. Cet article a pour objet de passer en revue les différentes méthodes…
MOISST: Multimodal Optimization of Implicit Scene for SpatioTemporal calibration
With the recent advances in autonomous driving and the decreasing cost of LiDARs, the use of multimodal sensor systems is on the rise. However, in order to make use of the information provided by a variety of complimentary sensors, it is necessary to accurately calibrate them. We take advantage of recent advances in computer graphics and implicit volumetric scene representation to tackle the problem of multi-sensor spatial and temporal calibration. Thanks to a new formulation of the Neural Radiance Field (NeRF) optimization, we are able to jointly optimize calibration parameters along with scene representation based on radiometric and geometric measurements. Our method enables accurate and …
Localisation basée vision à partir de caractéristiques discriminantes issues de données visuelles hétérogènes
Visual-based Localization (VBL) consists in retrieving the location of a visual image within a known space. VBL is involved in several present-day practical applications, such as indoor and outdoor navigation, 3D reconstruction, etc. The main challenge in VBL comes from the fact that the visual input to localize could have been taken at a different time than the reference database. Visual changes may occur on the observed environment during this period of time, especially for outdoor localization. Recent approaches use complementary information in order to address these visually challenging localization scenarios, like geometric information or semantic information. However geometric or sema…
Perspective-n-Learned-Point: Pose Estimation from Relative Depth
International audience; In this paper we present an online camera pose estimation method that combines Content-Based Image Retrieval (CBIR) and pose refinement based on a learned representation of the scene geometry extracted from monocular images. Our pose estimation method is two-step, we first retrieve an initial 6 Degrees of Freedom (DoF) location of an unknown-pose query by retrieving the most similar candidate in a pool of geo-referenced images. In a second time, we refine the query pose with a Perspective-n-Point (PnP) algorithm where the 3D points are obtained thanks to a generated depth map from the retrieved image candidate. We make our method fast and lightweight by using a commo…